#26 Measure Your Calibre

Calculus Level 3

0 1 [ 256. i 6 . d 2 d θ 2 { r = 1 503 e ( 2 r 1 ) i . θ } r = 0 502 e ( 2 r + 1 ) i . θ ] 1 4 d θ = ? \Large \displaystyle\int_{0}^{1} \left[ \dfrac{256.i^{6}.\dfrac{d^{2}}{d \theta^{2}} \left \{ \displaystyle\prod_{r=1}^{503} e^{(2r-1)i.\theta} \right \} }{ \displaystyle\prod_{r=0}^{502} e^{(2r+1)i.\theta} } \right]^{\dfrac{1}{4}} d\theta = ?

Details and Assumptions

  • Here e e is the euler's number.

  • Here i = 1 i=\sqrt{-1}

  • n = 1 k n \displaystyle{\prod_{n=1}^{k} n} means Continued Product of n upto k k


The answer is 2012.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
Apr 9, 2017

0 1 [ 256 i 6 d 2 d θ 2 { r = 1 503 e ( 2 r 1 ) i θ } r = 0 502 e ( 2 r + 1 ) i θ ] 1 / 4 d θ = 0 1 [ 256 i 6 d 2 d θ 2 { e i θ ( 503 ) 2 } e i θ ( 503 ) 2 ] 1 / 4 d θ ( ) = 0 1 [ 256 i 6 { e i θ ( 503 ) 2 i 2 ( 503 ) 4 } e i θ ( 503 ) 2 ] 1 / 4 d θ ( ) = 0 1 [ 256 ( 503 ) 4 i 8 = 1 ] 1 / 4 d θ = 4 503 0 1 d θ = 2012 \begin{aligned} \displaystyle\int_{0}^{1} \left[ \dfrac{256 \cdot i^{6} \cdot \dfrac{d^{2}}{d \theta^{2}} \left \{ \displaystyle\prod_{r=1}^{503} e^{(2r-1)i \theta} \right \} }{ \displaystyle\prod_{r=0}^{502} e^{(2r+1)i \theta} } \right]^{{1}/{4}} d\theta &= \displaystyle\int_{0}^{1} \left[ \dfrac{256 \cdot i^{6} \cdot \dfrac{d^{2}}{d \theta^{2}} \left \{ e^{i \theta (503)^2} \right \} }{ e^{i \theta (503)^2} } \right]^{{1}/{4}} d\theta & \small {\color{#3D99F6} (*)}\\ &= \displaystyle\int_{0}^{1} \left[ \dfrac{256 \cdot i^{6} \cdot \left \{ e^{i \theta (503)^2} \cdot i^2 \cdot (503)^4 \right \} }{ e^{i \theta (503)^2} } \right]^{{1}/{4}} d\theta & \small {\color{#3D99F6} (**)}\\ &= \displaystyle\int_{0}^{1} \left[ 256 \cdot (503)^4 \underbrace{i^8}_{\color{#3D99F6} = \ 1} \right]^{{1}/{4}} d\theta \\ &= 4 \cdot 503 \displaystyle\int_{0}^{1} d\theta \\ &= \boxed{2012} \end{aligned}


( ) r = 1 503 e ( 2 r 1 ) i θ = exp { r = 1 503 ( 2 r 1 ) i θ } = exp { i θ ( 503 ) 2 } r = 0 502 e ( 2 r + 1 ) i θ = r = 1 503 e ( 2 r 1 ) i θ = exp { r = 1 503 ( 2 r 1 ) i θ } = exp { i θ ( 503 ) 2 } \begin{aligned} \large \color{#3D99F6} (*) \ \ & \displaystyle\prod_{r=1}^{503} e^{(2r-1)i \theta} = \exp \left\{ \displaystyle \sum_{r=1}^{503} (2r-1) i \theta \right\} = \exp \left\{i \theta \cdot (503)^2 \right\} \\ & \displaystyle\prod_{r=0}^{502} e^{(2r+1)i \theta} = \displaystyle\prod_{r=1}^{503} e^{(2r-1)i \theta} = \exp \left\{ \displaystyle \sum_{r=1}^{503} (2r-1) i \theta \right\} = \exp \left\{i \theta \cdot (503)^2 \right\} \end{aligned}

( ) d 2 d θ 2 e i θ ( 503 ) 2 = i ( 503 ) 2 d d θ e i θ ( 503 ) 2 = i 2 ( 503 ) 4 e i θ ( 503 ) 2 {\large \color{#3D99F6} (**)} \ \ \dfrac{d^{2}}{d \theta^{2}} e^{i \theta (503)^2} = i (503)^2 \cdot \dfrac{d}{d \theta} e^{i \theta (503)^2} = i^2 (503)^4 \cdot e^{i \theta (503)^2}

Did you liked it?

Md Zuhair - 4 years, 2 months ago

Log in to reply

Yes, the problem seemed intimidating at first with so much of operators in it but right about the next moment when I saw the product of e raised to (2n-1) and (2n+1), I knew what I needed to do in order to solve this.

Tapas Mazumdar - 4 years, 2 months ago

Log in to reply

Yes, it seems tough, but not that tough

Md Zuhair - 4 years, 2 months ago

Log in to reply

@Md Zuhair One of the scariest looking problems! Going to scare my friends now ;)

Thomas Jacob - 4 years ago

Log in to reply

@Thomas Jacob Ya it looked scary, but is not that much. When we start solving, its going to end up easy!

@Thomas Jacob ... Scare your friend :P GO go!! Haha!

Md Zuhair - 4 years ago

Log in to reply

@Md Zuhair Yeah! One of the scariest easy problems I'd say!

Thomas Jacob - 4 years ago

Log in to reply

@Thomas Jacob I was also scared when i saw this. :P

Md Zuhair - 4 years ago

Log in to reply

@Md Zuhair Haha! Probably everyone was on seeing it for the first time!

Thomas Jacob - 4 years ago

@Thomas Jacob But i dunno why is it level pending.

Md Zuhair - 4 years ago

I mean the problem

Md Zuhair - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...