I am Equal to the Cube of my Digit Sum

9215 ( 9 + 2 + 1 + 5 ) 3 = 1 7 3 = 4913 \begin{aligned} 9215 &\ne & (9+2+1+5)^3 = 17^3 = 4913 \end{aligned}

Find all 4-digits integers whose cube of the sum of its digits is equal to the original number.

Submit the sum of all these 4-digit numbers.


The answer is 10745.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We are looking for the numbers N = a b c d N=abcd such that a b c d = ( a + b + c + d ) 3 abcd = (a + b + c + d)^{3} , with 10000 > a b c d 1000 21 , 54... = 10000 3 > a + b + c + d 10 21 a + b + c + d 10 10000 > abcd \ge 1000 \Rightarrow 21,54... = \sqrt[3]{10000} > a + b + c +d \ge 10 \Rightarrow \boxed{21 \ge a + b + c +d \ge 10} . Keep this in mind.

There are 3 possibilities:

1 \boxed{1} .- a + b + c + d = 3 k 1 ,with k N ( a + b + c + d ) 3 = ( 3 k 1 ) 3 = 9 m 1 a + b + c + d = 3k - 1 \text{ ,with } k \in \mathbb{N} \Rightarrow (a + b + c + d)^{3} = (3k - 1)^{3} = 9m - 1 , with m N m \in \mathbb{N} \Rightarrow ( a + b + c + d ) 3 = a b c d = 1000 a + 100 b + 10 c + d a + b + c + d ( m o d 9 ) (a + b+ c+ d)^{3} = abcd = 1000 \cdot a + 100 \cdot b + 10 \cdot c + d \equiv a + b + c + d \pmod {9} and ( a + b + c + d ) 3 1 ( m o d 9 ) (a + b + c + d)^{3} \equiv -1 \pmod{9} a + b + c + d = 17 1 7 3 = 4913 is a number because 21 4 + 9 + 1 + 3 = 17 10 \Rightarrow a + b + c + d = 17 \Rightarrow 17^3 = \boxed{4913} \text{ is a number because } 21 \ge 4 + 9 + 1 + 3 = 17 \ge 10 .

2 \boxed{2} .- a + b + c + d = 3 k + 1 ,with k N ( a + b + c + d ) 3 = ( 3 k + 1 ) 3 = 9 m + 1 a + b + c + d = 3k + 1 \text{ ,with } k \in \mathbb{N} \Rightarrow (a + b + c + d)^{3} = (3k + 1)^{3} = 9m + 1 , with m N m \in \mathbb{N} a + b + c + d = 10 or 19 1 0 3 = 1000 is not a valid number because \Rightarrow a + b + c + d = 10 \text{ or } 19 \Rightarrow 10^3 = 1000 \text{ is not a valid number because } 1 + 0 + 0 + 0 = 1 < 10 and 1 9 3 = 6859 is a not valid number because 6 + 8 + 5 + 9 > 21 1 + 0 + 0 + 0 =1 < 10 \text{ and } 19^3 = 6859 \text{ is a not valid number because } 6 + 8 + 5 + 9 > 21

3 \boxed{3} .- a + b + c + d = 3 k ,with k N ( a + b + c + d ) 3 = ( 3 k ) 3 = 9 m a + b + c + d = 3k \text{ ,with } k \in \mathbb{N} \Rightarrow (a + b + c + d)^{3} = (3k)^{3} = 9m , with m N m \in \mathbb{N} a + b + c + d = 18 1 8 3 = 5832 is another number because \Rightarrow a + b + c + d = 18 \Rightarrow 18^3 = \boxed{5832} \text{ is another number because } 21 5 + 8 + 3 + 2 = 18 10 21 \ge 5 + 8 + 3 + 2 = 18 \ge 10 .

And there are not more numbers, therefore the solution is 5832 + 4913 = 10745 5832 + 4913 = \boxed{10745}

In case 1, can you explain how you arrived at the conclusion that a + b + c + d = 17 a + b + c + d = 17 ? It seems to me that you want to conclude that a + b + c + d 1 ( m o d 9 ) a + b + c + d \equiv - 1 \pmod{9} , but we currently only have ( a + b + c + d ) 3 1 ( m o d 9 ) (a + b + c + d ) ^3 \equiv - 1 \pmod{9} .

Calvin Lin Staff - 5 years, 3 months ago

Log in to reply

( a + b + c + d ) 3 = a b c d = 1000 a + 100 b + 10 c + d a + b + c + d ( m o d 9 ) (a + b+ c+ d)^{3} = abcd = 1000 \cdot a + 100 \cdot b + 10 \cdot c + d \equiv a + b + c + d \pmod {9} and ( a + b + c + d ) 3 1 ( m o d 9 ) (a + b + c + d)^{3} \equiv -1 \pmod{9}

Guillermo Templado - 5 years, 3 months ago

Log in to reply

Anyway, you can also solve this problem with hit and trial taking natural numbers among 10 and 21 (both inclusive)

Guillermo Templado - 5 years, 3 months ago

Great! Please add that explanation into your solution for completeness. You can edit it by hitting the edit button at the bottom.

Calvin Lin Staff - 5 years, 3 months ago

Log in to reply

@Calvin Lin I have just done it,sir

Guillermo Templado - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...