Its time for cubes

Algebra Level 5

Let a 1 , a 2 , , a 4 a_1, a_2, \ldots,a_{4} denote the roots to the equation x 1 + 2 x 2 + 3 x 3 + 4 x 4 = 0 x^1 + 2x^2 + 3x^3 + 4x^4 = 0 . Then,

( 8 a 1 3 + 1 ) ( 8 a 2 3 + 1 ) ( 8 a 4 3 + 1 ) = A B (8a_{ 1 }^{ 3 }+1)(8a_{ 2 }^{ 3 }+1)\cdots (8a_{ 4 }^{ 3 }+1)=-\frac { A }{ B }

where A , B A,B are positive coprime integers. What is A + B A+B ?


Inspiration

You can refer to this


The answer is 51.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Joel Yip
Mar 14, 2016

( 8 a 1 3 + 1 ) ( 8 a 2 3 + 1 ) ( 8 a 3 3 + 1 ) ( 8 a 4 3 + 1 ) = 8 4 ( a 1 3 + 1 8 ) ( a 2 3 + 1 8 ) ( a 3 3 + 1 8 ) ( a 4 3 + 1 8 ) (8a_{ 1 }^{ 3 }+1)(8a_{ 2 }^{ 3 }+1)(8a_{ 3 }^{ 3 }+1)(8a_{ 4 }^{ 3 }+1)={ 8 }^{ 4 }\left( a_{ 1 }^{ 3 }+\frac { 1 }{ 8 } \right) \left( a_{ 2 }^{ 3 }+\frac { 1 }{ 8 } \right) \left( a_{ 3 }^{ 3 }+\frac { 1 }{ 8 } \right) \left( a_{ 4 }^{ 3 }+\frac { 1 }{ 8 } \right)

With some expansion,

r 3 + 1 8 = ( r + 1 2 ) ( r 1 + 3 i 4 ) ( r 1 3 i 4 ) { r }^{ 3 }+\frac { 1 }{ 8 } =\left( r+\frac { 1 }{ 2 } \right) \left( r-\frac { 1+\sqrt { 3 } i }{ 4 } \right) \left( r-\frac { 1-\sqrt { 3 } i }{ 4 } \right)

8 4 ( a 1 + 1 2 ) ( a 1 1 + 3 i 4 ) ( a 1 1 3 i 4 ) ( a 2 + 1 2 ) ( a 2 1 + 3 i 4 ) ( a 2 1 3 i 4 ) ( a 3 + 1 2 ) ( a 3 1 + 3 i 4 ) ( a 3 1 3 i 4 ) ( a 4 + 1 2 ) ( a 4 1 + 3 i 4 ) ( a 4 1 3 i 4 ) { 8 }^{ 4 }\left( { a }_{ 1 }+\frac { 1 }{ 2 } \right) \left( { a }_{ 1 }-\frac { 1+\sqrt { 3 } i }{ 4 } \right) \left( { a }_{ 1 }-\frac { 1-\sqrt { 3 } i }{ 4 } \right) \left( { a }_{ 2 }+\frac { 1 }{ 2 } \right) \left( { a }_{ 2 }-\frac { 1+\sqrt { 3 } i }{ 4 } \right) \left( { a }_{ 2 }-\frac { 1-\sqrt { 3 } i }{ 4 } \right) \left( { a }_{ 3 }+\frac { 1 }{ 2 } \right) \left( { a }_{ 3 }-\frac { 1+\sqrt { 3 } i }{ 4 } \right) \left( { a }_{ 3 }-\frac { 1-\sqrt { 3 } i }{ 4 } \right) \left( { a }_{ 4 }+\frac { 1 }{ 2 } \right) \left( { a }_{ 4 }-\frac { 1+\sqrt { 3 } i }{ 4 } \right) \left( { a }_{ 4 }-\frac { 1-\sqrt { 3 } i }{ 4 } \right)

In This note , I generalised that type of function and let f ( x ) = m = 1 4 m x m f\left( x \right) =\sum _{ m=1 }^{ 4 }{ m{ x }^{ m } }

We rearrange and 8 4 ( a 1 + 1 2 ) ( a 2 + 1 2 ) ( a 3 + 1 2 ) ( a 4 + 1 2 ) ( a 1 1 + 3 i 4 ) ( a 2 1 + 3 i 4 ) ( a 3 1 + 3 i 4 ) ( a 4 1 + 3 i 4 ) ( a 1 1 3 i 4 ) ( a 2 1 3 i 4 ) ( a 3 1 3 i 4 ) ( a 4 1 3 i 4 ) { 8 }^{ 4 }\left( { a }_{ 1 }+\frac { 1 }{ 2 } \right) \left( { a }_{ 2 }+\frac { 1 }{ 2 } \right) \left( { a }_{ 3 }+\frac { 1 }{ 2 } \right) \left( { a }_{ 4 }+\frac { 1 }{ 2 } \right) \left( { a }_{ 1 }-\frac { 1+\sqrt { 3 } i }{ 4 } \right) \left( { a }_{ 2 }-\frac { 1+\sqrt { 3 } i }{ 4 } \right) \left( { a }_{ 3 }-\frac { 1+\sqrt { 3 } i }{ 4 } \right) \left( { a }_{ 4 }-\frac { 1+\sqrt { 3 } i }{ 4 } \right) \left( { a }_{ 1 }-\frac { 1-\sqrt { 3 } i }{ 4 } \right) \left( { a }_{ 2 }-\frac { 1-\sqrt { 3 } i }{ 4 } \right) \left( { a }_{ 3 }-\frac { 1-\sqrt { 3 } i }{ 4 } \right) \left( { a }_{ 4 }-\frac { 1-\sqrt { 3 } i }{ 4 } \right)

8 4 ( 1 ) 4 f ( 1 2 ) 4 ( 1 ) 4 f ( 1 + 3 i 4 ) 4 ( 1 ) 4 f ( 1 3 i 4 ) 4 { 8 }^{ 4 }\frac { { \left( -1 \right) }^{ 4 }f\left( -\frac { 1 }{ 2 } \right) }{ 4 } \frac { { \left( -1 \right) }^{ 4 }f\left( \frac { 1+\sqrt { 3 } i }{ 4 } \right) }{ 4 } \frac { { \left( -1 \right) }^{ 4 }f\left( \frac { 1-\sqrt { 3 } i }{ 4 } \right) }{ 4 }

8 4 ( 1 8 ) 4 ( 1 2 + 3 3 8 i ) 4 ( 1 2 + 3 3 8 i ) 4 = 8 4 ( 1 8 ) ( 1 4 + 27 64 ) 64 = 8 4 ( 1 8 ) ( 43 64 ) 64 = 8 4 43 8 × 64 × 64 = 43 8 = 43 2 3 { 8 }^{ 4 }\frac { \left( -\frac { 1 }{ 8 } \right) }{ 4 } \frac { \left( -\frac { 1 }{ 2 } +\frac { 3\sqrt { 3 } }{ 8 } i \right) }{ 4 } \frac { \left( -\frac { 1 }{ 2 } +\frac { 3\sqrt { 3 } }{ 8 } i \right) }{ 4 } ={ 8 }^{ 4 }\frac { \left( -\frac { 1 }{ 8 } \right) \left( \frac { 1 }{ 4 } +\frac { 27 }{ 64 } \right) }{ 64 } \\ ={ 8 }^{ 4 }\frac { \left( -\frac { 1 }{ 8 } \right) \left( \frac { 43 }{ 64 } \right) }{ 64 } \\ =-{ 8 }^{ 4 }\frac { 43 }{ 8\times 64\times 64 } \\ =-\frac { 43 }{ 8 } \\ =-\frac { 43 }{ { 2 }^{ 3 } }

Thus A = 43 A=43 and B = 8 B=8 . So A + B = 43 + 8 = 51 A + B = 43 + 8 = 51 .

汶良 林
Mar 18, 2016

Great solution! +1!

Joel Yip - 5 years, 2 months ago

Log in to reply

This is great!

Joel Yip - 5 years, 2 months ago

I don't quite understand how you got the third step?

Is it cubing?

Joel Yip - 5 years, 2 months ago

Log in to reply

Yes. I cube both sides.

汶良 林 - 5 years, 2 months ago

Log in to reply

Thank you! otherwise again great solution!

Joel Yip - 5 years, 2 months ago

Log in to reply

@Joel Yip can this question be done by taking m= 8a1^3 +1 putting values of a in terms of m and then solving .. i tried this but i am not getting the solution please provide i solution in a way i have described...

Deepansh Jindal - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...