JEE Advanced Indefinite Integration 1

Calculus Level 5

1 x 1 + x d x = ? \int \sqrt{\dfrac{1-\sqrt{x}}{1+\sqrt{x}}} \, dx = \ ?

This problem is a part of My picks for JEE Advanced 1
( x + 2 ) 1 x sin 1 x + C (\sqrt{x}+2)\sqrt{1-x}-\sin^{-1}\sqrt{x}+C ( 2 x ) 1 x + cos 1 x + C (2-\sqrt{x})\sqrt{1-x}+\cos^{-1}\sqrt{x}+C ( x 2 ) 1 x + cos 1 x + C (\sqrt{x}-2)\sqrt{1-x}+\cos^{-1}\sqrt{x}+C ( x + 2 ) 1 x + sin 1 x + C (\sqrt{x}+2)\sqrt{1-x}+\sin^{-1}\sqrt{x}+C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Dhruva Patil
Feb 26, 2015

I = 1 x 1 + x d x x = cos 2 t d x = sin 2 t d t 1 x 1 + x = 1 cos t 1 + cos t = tan t 2 = sin t 1 + cos t S u b s t i t u t i n g t h e l a s t v a l u e I = sin t 1 + cos t sin 2 t d t I = 2 sin 2 t cos t 1 + cos t d t I = 2 ( 1 + cos t ) ( 1 cos t ) cos t 1 + cos t d t I = 2 ( cos t 1 ) cos t d t I = ( 1 + cos 2 t ) 2 cos t d t I = t + sin 2 t 2 2 sin t + C S u b s t i t u t i n g cos x = x I = ( x 2 ) 1 x + cos 1 x + C I=\displaystyle \int \frac { \sqrt { 1-\sqrt { x } } }{ \sqrt { 1+\sqrt { x } } } dx\\ x=\cos ^{ 2 }{ t } \\ dx=-\sin { 2t } dt\\ \frac { \sqrt { 1-\sqrt { x } } }{ \sqrt { 1+\sqrt { x } } } =\frac { \sqrt { 1-\cos { t } } }{ \sqrt { 1+\cos { t } } } =\tan { \frac { t }{ 2 } } =\frac { \sin { t } }{ 1+\cos { t } } \\ Substituting\quad the\quad last\quad value\\ I=\displaystyle -\int \frac { \sin { t } }{ 1+\cos { t } } \sin { 2t } dt\\ I=\displaystyle -\int \frac { 2\sin ^{ 2 }{ t } \cos { t } }{ 1+\cos { t } } dt\\ I=\displaystyle -\int \frac { 2(1+\cos { t } )(1-\cos { t } )\cos { t } }{ 1+\cos { t } } dt\\ I=\displaystyle \int 2(\cos { t } -1)\cos { t } dt\\ I=\displaystyle \int (1+\cos { 2t } )-2\cos { t } dt\\ I=\displaystyle t+\frac { \sin { 2t } }{ 2 } -2\sin { t } +C\\ Substituting\quad \cos { x } =\sqrt { x } \\ I=\displaystyle \boxed { \boxed { (\sqrt { x } -2)\sqrt { 1-x } +\cos ^{ -1 }{ x } +C } }

Did the same!

Prakhar Bindal - 5 years ago
Pranjal Jain
Feb 19, 2015

Looking at the integral, first step has to remove nested radical. So I substituted x = t 2 x=t^2 ( d x = 2 t d t dx=2tdt ) first. It becomes 2 t 1 t 1 + t d t \int 2t\sqrt{\dfrac{1-t}{1+t}} dt

Now, rationalize the numerator by multiplying by 1 t \sqrt{1-t} which results in 2 t ( 1 t ) 1 t 2 d t 2\int\dfrac{t(1-t)}{\sqrt{1-t^2}} dt 2 t 1 + ( 1 t 2 ) 1 t 2 d t 2\int\dfrac{t-1+(1-t^2)}{\sqrt{1-t^2}} dt = 2 t 1 t 2 d t 2 d t 1 t 2 + 2 1 t 2 d t =2\int\dfrac{t}{\sqrt{1-t^2}} dt-2\int\dfrac{dt}{\sqrt{1-t^2}}+2\int\sqrt{1-t^2} dt

= 2 1 t 2 2 sin 1 t + 2 [ t 2 1 t 2 + 1 2 sin 1 t ] + C =-2\sqrt{1-t^2}-2\sin^{-1}t+2\left [\dfrac{t}{2}\sqrt{1-t^2}+\dfrac{1}{2}\sin^{-1} t\right ] +C = ( t 2 ) 1 t 2 sin 1 y + C =(t-2)\sqrt{1-t^2}-\sin^{-1}y+C = ( x 2 ) 1 x + cos 1 x + C =(\sqrt{x}-2)\sqrt{1-x}+\cos^{-1}x+C'

Mvs Saketh
Feb 18, 2015

ok let us begin by multiplying root(1-root(x)) up and down, and now follow me

1 x 1 + x = 1 x 1 x = 1 1 x x 1 x \sqrt { \frac { 1-\sqrt { x } }{ 1+\sqrt { x } } } =\quad \frac { 1-\sqrt { x } }{ \sqrt { 1-x } } =\quad \frac { 1 }{ \sqrt { 1-x } } -\sqrt { \frac { x }{ 1-x } }

Now the first part is easy, let us focus on second, let us substitute

x = ( s i n θ ) 2 d x = 2 s i n θ c o s θ d θ x 1 x = 2 s i n s i n c o s c o s d θ = 2 s i n 2 d θ = 1 c o s 2 θ x={ (sin\theta ) }^{ 2 }\\ \\ dx=\quad 2sin\theta \quad cos\theta \quad d\theta \\ \\ \sqrt { \frac { x }{ 1-x } } =\frac { 2sin\quad sin\quad cos }{ cos } d\theta \quad =\quad 2{ sin }^{ 2 }\quad d\theta \quad =\quad 1-\quad cos2\theta \quad \\ \\

which can be easily integrated to get

θ 1 2 s i n ( 2 θ ) + c = a r c s i n ( x ) x 1 x + c = a r c c o s ( x ) x 1 x + c + π / 2 a r c c o s ( x ) x 1 x + d \\ \theta -\frac { 1 }{ 2 } sin(2\theta )\quad +c\quad \\ \\ =arcsin(\sqrt { x } )\quad -\quad \sqrt { x } \sqrt { 1-x\quad } +c\quad =\quad -arccos(\sqrt { x } )\quad -\quad \sqrt { x } \sqrt { 1-x\quad } \quad +c\quad +\pi /2\quad \\ \\ -arccos(\sqrt { x } )\quad -\quad \sqrt { x } \sqrt { 1-x\quad } \quad +\quad d\\ \\ \\

the whole integral is (combining first easy part and second needed substitution part becomes

2 1 x + a r c c o s ( x ) + x 1 x = ( 2 + x ) 1 x + a r c c o s ( x ) -2\sqrt { 1-x }+arccos(\sqrt { x } )\quad +\quad \sqrt { x } \sqrt { 1-x } \quad =\quad \left( -2+\sqrt { x } \right) \sqrt { 1-x } +arccos(\sqrt { x } )

i hope it is clear

I tried by substituting x=cos(square)2© but that was pretty combursome

Ashish Arora - 6 years, 3 months ago

Log in to reply

indeed i tried that initially as well, but stopped when it got combursome

Mvs Saketh - 6 years, 3 months ago

Can you fill in the details? Thanks!

Calvin Lin Staff - 6 years, 3 months ago

Log in to reply

filled the details

Mvs Saketh - 6 years, 3 months ago

Log in to reply

Great, thanks! It did require much more work than just rationalizing. I wonder if @Pranjal Jain was thinking of another approach.

Calvin Lin Staff - 6 years, 3 months ago

Log in to reply

@Calvin Lin Well, nice solution @Mvs Saketh . Though I prefer algebraic substitution in indefinite integrals and trigonometric in definite ones. So I substituted x = t 2 x=t^2 ( d x = 2 t d t dx=2tdt ) first, and then rationalized the numerator by multiplying by 1 t \sqrt{1-t} which results in 2 t ( 1 t ) 1 t 2 d t 2\int\dfrac{t(1-t)}{\sqrt{1-t^2}} dt = 2 t 1 t 2 d t 2 d t 1 t 2 + 2 1 t 2 d t =2\int\dfrac{t}{\sqrt{1-t^2}} dt-2\int\dfrac{dt}{\sqrt{1-t^2}}+2\int\sqrt{1-t^2} dt = 2 1 t 2 2 sin 1 t + 2 [ t 2 1 t 2 + 1 2 sin 1 t ] + C =-2\sqrt{1-t^2}-2\sin^{-1}t+2\left [\dfrac{t}{2}\sqrt{1-t^2}+\dfrac{1}{2}\sin^{-1} t\right ] +C = ( x 2 ) 1 x + cos 1 x + C =(\sqrt{x}-2)\sqrt{1-x}+\cos^{-1}x+C

Pranjal Jain - 6 years, 3 months ago

Log in to reply

@Pranjal Jain That is indeed a good short one, and yes i too prefer trignometric for definite so i can use walis formula, but i also tend to avoid terms like root(1-x^2) etc in the numerators as their formulaes are cumbersome and have to be remembered,, derivation might end up wrong due to silly mistakes, :)

Mvs Saketh - 6 years, 3 months ago

Log in to reply

@Mvs Saketh Exactly Wallis helps a lot in definite. Agreed by the fact that it is tough to remember them, but you just have to do it once. :)

Pranjal Jain - 6 years, 3 months ago

@Pranjal Jain Oh nice. Can you add this as a separate solution? Thanks!

Calvin Lin Staff - 6 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...