JEE maths#9

Calculus Level 3

e e 2010 1 x ( 1 + 1 ln x ln x ln ( x ln x ) ) d x \large \displaystyle\int_{e}^{e^{2010}} \dfrac{1}{x} \left(1+\frac{1-\ln x}{\ln x\ln(\frac{x}{\ln x})} \right) \, dx

The integral above can be expressed as b ln ( a ln a ) {b-\ln (a- \ln a)} , where a a and b b are integers.

Enter a b {a-b} as your answer.


For more KVPY practice questions try my set1

For JEE problems try my set2


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Mar 30, 2017

e e 2010 1 x [ 1 + 1 x ln ( x ) ln ( x ln ( x ) ) ] d x \large \displaystyle \int_e^{e^{2010}} \frac1x \left [ 1+ \frac{1 - x}{\ln(x) \ln \left ( \frac{x}{\ln(x)} \right ) } \right ] dx

ln ( x ) = u 1 x d x = d u \color{#20A900} \large \displaystyle \ln(x) = u \rightarrow \frac1x dx = du

= 1 2010 ( 1 + 1 u u ( u ln ( u ) ) ) d u \large \displaystyle = \int_1^{2010} \left ( 1 + \frac{1-u}{u(u - \ln(u))} \right ) du

= 2009 + 1 2010 ( 1 u u ( u ln ( u ) ) ) d u \large \displaystyle = 2009 + \int_1^{2010} \left (\frac{1-u}{u(u - \ln(u))} \right ) du

= 2009 + 1 2010 ( 1 u 1 u ln ( u ) ) d u \large \displaystyle = 2009 + \int_1^{2010} \left (\frac{\frac1u -1}{u - \ln(u)} \right ) du

u ln ( u ) = v ( 1 1 u ) d u = d v \color{#20A900} \large \displaystyle u - \ln(u) = v \rightarrow \left ( 1 - \frac1u \right ) du = dv

= 2009 1 2010 ln ( 2010 ) d v v \large \displaystyle = 2009 - \int_1^{2010-\ln(2010)} \frac{dv}{v}

= 2009 ln ( 2010 ln ( 2010 ) ) \large \displaystyle = 2009 - \ln(2010 - \ln(2010))

a = 2010 , b = 2009 , a b = 1 \color{#3D99F6} \large \displaystyle a = 2010 , b = 2009, \boxed{\large \displaystyle a-b = 1}

In the first line, it should be 1 + 1 x ln x ln ( x l n x ) 1 +\frac{1-x}{\ln x \ln (\frac{x}{ln x})}

Rahil Sehgal - 4 years, 2 months ago

Log in to reply

Thanks, fixed it.

Guilherme Niedu - 4 years, 2 months ago

Log in to reply

By the way nice solution upvoted✓

Rahil Sehgal - 4 years, 2 months ago

Log in to reply

@Rahil Sehgal Thanks, sir!

Guilherme Niedu - 4 years, 2 months ago

Log in to reply

@Guilherme Niedu Sir I am just a 16 year old boy and not a sir :)

Rahil Sehgal - 4 years, 2 months ago

Log in to reply

@Rahil Sehgal Haha, I am 28, sorry. It's just the formality...

Guilherme Niedu - 4 years, 2 months ago

@Rahil Sehgal please post more jee and kvpy questions. They are great

Md Zuhair - 4 years, 2 months ago

Log in to reply

Thanks... I will keep posting new questions .... :)

Rahil Sehgal - 4 years, 2 months ago
Anirban Karan
Apr 3, 2017

I = e e 2010 1 x ( 1 + 1 ln x ln x ln ( x ln x ) ) d x = ln x e e 2010 + e e 2010 1 ln x ln x ln ( x ln x ) d x x = 2009 + e e 2010 1 ln x ln x ln ( x ln x ) d x x I= \displaystyle\int_{e}^{e^{2010}} \dfrac{1}{x} \left(1+\frac{1-\ln x}{\ln x\ln(\frac{x}{\ln x})} \right)dx\\ = \ln x\Big|_e^{e^{2010}}+\displaystyle\int_{e}^{e^{2010}} \frac{1-\ln x}{\ln x\ln(\frac{x}{\ln x})}\cdot\frac{dx}{x} \\ =2009+\displaystyle\int_{e}^{e^{2010}} \frac{1-\ln x}{\ln x\ln(\frac{x}{\ln x})}\cdot\frac{dx}{x}

Now, take x ln x = y ln x 1 ( ln x ) 2 d x = d y \cfrac{x}{\ln x}=y \implies \cfrac{\ln x-1}{(\ln x)^2}dx=dy

e e 2010 1 ln x ln x ln ( x ln x ) d x x = e ( e 2010 2010 ) d y y ln y = e ( e 2010 2010 ) d ( ln y ) ln y = ln ( ln y ) e ( e 2010 2010 ) = ln ( 2010 ln 2010 ) \implies \displaystyle\int_{e}^{e^{2010}} \frac{1-\ln x}{\ln x\ln(\frac{x}{\ln x})}\cdot\frac{dx}{x}= -\displaystyle\int_{e}^{\big(\frac{e^{2010}}{2010}\big)} \frac{dy}{y\ln y}=-\displaystyle\int_{e}^{\big(\frac{e^{2010}}{2010}\big)} \frac{d(\ln y)}{\ln y}=-\ln(\ln y) \Big|_{e}^{\big(\frac{e^{2010}}{2010}\big)}=-\ln(2010-\ln2010)

So, I = 2009 ln ( 2010 ln 2010 ) a b = 1 I=2009-\ln(2010-\ln2010)\implies \boxed{a-b=1}

Thank you sir for uploading the solution.(+1) :)

Rahil Sehgal - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...