Just an Ordinary Arithmetic

Level 2

1 1 × 4 × 7 + 1 4 × 7 × 10 + 1 7 × 10 × 13 + + 1 19 × 22 × 25 = a b \frac 1{1 \times 4 \times 7} + \frac 1{4 \times 7 \times 10} + \frac 1{7 \times 10 \times 13} + \cdots + \frac 1{19 \times 22 \times 25} = \frac ab

The equation above holds true for positive coprime integers a a and b b . Find a + b a+b .


The answer is 2291.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 21, 2018

S = 1 1 × 4 × 7 + 1 4 × 7 × 10 + 1 7 × 10 × 13 + + 1 19 × 22 × 25 By partial fraction decomposition = 1 18 ( 1 1 2 4 + 1 7 + 1 4 2 7 + 1 10 + 1 7 2 10 + 1 13 + + 1 19 2 22 + 1 25 ) = 1 18 ( 1 1 4 1 22 + 1 25 ) = 91 2200 \begin{aligned} S & = \frac 1{1\times 4\times 7} + \frac 1{4\times 7\times 10} + \frac 1{7\times 10\times 13} + \cdots + \frac 1{19\times 22\times 25} & \small \color{#3D99F6} \text{By partial fraction decomposition} \\ & = \frac 1{18} \left(\frac 11 \color{#3D99F6} - \frac 24 \color{#D61F06} + \frac 17 \color{#3D99F6} + \frac 14 \color{#D61F06} - \frac 27 \color{#3D99F6} + \frac 1{10} \color{#D61F06} + \frac 17 \color{#3D99F6} - \frac 2{10} \color{#D61F06} + \frac 1{13} \color{#3D99F6}+ \cdots \color{#D61F06}+ \frac 1{19} {\color{#3D99F6} - \frac 2{22}} + \frac 1{25} \right) \\ & = \frac 1{18}\left(1 - \frac 14 - \frac 1{22} + \frac 1{25} \right) = \frac {91}{2200} \end{aligned}

Therefore, a + b = 91 + 2200 = 2291 a+b = 91+2200 = \boxed{2291} .

@Ivan Richmond Jumawan , you should use \times for × \times and not x x x .

Chew-Seong Cheong - 2 years, 9 months ago

Log in to reply

Thanks for that, I will next time. :)

IR J - 2 years, 9 months ago

Btw, Mr. Cheong, I know you have great knowledge when it comes to math, can I ask you to be my mentor?

IR J - 2 years, 9 months ago

Log in to reply

You can post discussion on Brilliant.org

Chew-Seong Cheong - 2 years, 9 months ago

Log in to reply

@Chew-Seong Cheong Ok. I will. Haven't tried it yet. thanks.

IR J - 2 years, 9 months ago

Log in to reply

@Ir J Can add me on Facebook Chew-Seong Cheong if you want.

Chew-Seong Cheong - 2 years, 9 months ago
X X
Aug 21, 2018

1 1 × 4 × 7 + 1 4 × 7 × 10 + 1 7 × 10 × 13 + + 1 19 × 22 × 25 \frac 1{1 \times 4 \times 7} + \frac 1{4 \times 7 \times 10} + \frac 1{7 \times 10 \times 13} + \cdots + \frac 1{19 \times 22 \times 25}

= 1 6 ( ( 1 1 × 4 1 4 × 7 ) + ( 1 4 × 7 1 7 × 10 ) + . . . + ( 1 19 × 22 1 22 × 25 ) ) =\frac16\left((\frac1{1\times4}-\frac1{4\times7})+(\frac1{4\times7}-\frac1{7\times10})+...+(\frac1{19\times22}-\frac1{22\times25})\right)

= 1 1 × 4 × 6 1 22 × 25 × 6 =\frac1{1\times4\times6}-\frac1{22\times25\times6}

= 91 2200 =\frac{91}{2200}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...