Just another s π \pi cy integral

Calculus Level pending

2 0 π 4 tanh 1 ( tan 2 x ) d x = ? 2\int_0^\frac \pi 4 \tanh^{-1} (\tan^2 x)\ dx =\ ?

Evaluate the integral given above to three decimal places.

Notation : tanh 1 \tanh^{-1} denotes the inverse hyperbolic tangent function.


The answer is 0.544.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Refer @N. Aadhaar Murty solution. I will only give you a way to find 0 π / 2 log ( cos ( x ) ) d x \displaystyle\int_0^{π/2}\log(\cos(x))dx

Suppose 0 π / 2 log ( cos ( x ) ) d x = τ ( 0 ) \int_0^{π/2} \log(\cos(x)) dx= \tau'(0) Now 0 π / 2 ( cos ( x ) ) a d x = Γ ( a + 1 2 ) Γ ( 1 2 ) 2 Γ ( a + 2 2 ) = τ ( a ) \displaystyle \int_0^{π/2} \left(\cos(x)\right )^adx= \dfrac{\Gamma{(\frac{a+1}{2})}\Gamma{(\frac{1}{2})}}{2\Gamma{(\frac{a+2}{2})}}=\tau(a)

Note From definition of Beta function we get 0 π / 2 sin 2 a 1 ( x ) cos 2 b 1 ( x ) d x = Γ ( a ) Γ ( b ) 2 Γ ( a + b ) \displaystyle\int_0^{π/2} \sin^{2a-1} (x) \cos^{2b-1} (x) dx= \dfrac{\Gamma{(a)} \Gamma{(b)}}{2\Gamma{(a+b)}}

Now 0 π / 2 log ( cos ( x ) ) cos a ( x ) d x = a ( Γ ( a + 1 2 ) Γ ( 1 2 ) 2 Γ ( a + 2 2 ) ) \displaystyle\int_0^{π/2} \log(\cos(x))\cos^a(x) dx=\dfrac{\partial}{\partial{a}} \left(\dfrac{\Gamma{(\frac{a+1}{2})}\Gamma{(\frac{1}{2})}}{2\Gamma{(\frac{a+2}{2})}}\right)

= π 4 ( Γ ( a 2 + 1 ) Γ ( a + 1 2 ) Γ ( a 2 + 1 ) Γ ( a + 1 2 ) Γ 2 ( a 2 + 1 ) ) =\frac{\sqrt{\pi}}{\mathrm{4}}\left(\:\frac{\Gamma\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)\Gamma'\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)-\Gamma'\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)\Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)}{\Gamma^{\mathrm{2}} \left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)}\right) = π 4 ( Γ ( a 2 + 1 ) Γ ( a + 1 2 ) ψ ( a + 1 2 ) Γ ( a 2 + 1 ) ψ ( a 2 + 1 ) Γ ( a + 1 2 ) Γ 2 ( a 2 + 1 ) ) = τ ( a ) =\frac{\sqrt{\pi}}{\mathrm{4}}\left(\frac{\Gamma\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)\Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)\psi\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)-\Gamma\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)\psi\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)\Gamma\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)}{\Gamma^{\mathrm{2}} \left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)}\:\right)=\tau'\left({a}\right) Now τ ( 0 ) = π 4 ( Γ ( 1 ) π ψ ( 1 2 ) ψ ( 1 ) π 1 ) = π 4 ( γ 2 l o g ( 2 ) + γ ) \tau'\left(\mathrm{0}\right)=\frac{\sqrt{\pi}}{\mathrm{4}}\left(\frac{\Gamma\left(\mathrm{1}\right)\sqrt{\pi}\:\psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)-\psi\left(\mathrm{1}\right)\sqrt{\pi}}{\mathrm{1}}\right)=\frac{\pi}{\mathrm{4}}\left(-\gamma-\mathrm{2log}\left(\mathrm{2}\right)+\gamma\right) = π 2 l o g ( 2 ) =-\frac{\pi}{\mathrm{2}}\mathrm{log}\left(\mathrm{2}\right) Similar approach for finding 0 π / 2 log n ( sin ( x ) ) sin a ( x ) d x \displaystyle\int_0^{π/2} \log^n(\sin(x))\sin^a(x)dx

Thanks! Here is a slightly easier solution to the original integral: https://www.youtube.com/watch?v=7wiybMkEfbc

N. Aadhaar Murty - 2 months, 1 week ago

Log in to reply

This method is nice .I was aware of this method.But I wanted to generalise for such as 0 π / 2 log 2 ( sin ( x ) ) sin π ( x ) d x \displaystyle\int_0^{π/2} \log^{2}(\sin(x)) \sin^{π}(x) dx !!

Dwaipayan Shikari - 2 months, 1 week ago

Log in to reply

I see, great solution but there is a small typo in your note: I think you forgot to multiply the integral by 2 2 in the definition for B ( x , y ) \Beta(x,y) .

N. Aadhaar Murty - 2 months, 1 week ago

Log in to reply

@N. Aadhaar Murty Yeah thanks!

Dwaipayan Shikari - 2 months, 1 week ago
N. Aadhaar Murty
Apr 5, 2021

Using the definition for tanh 1 , \text {tanh}^{-1},

tanh 1 ( tan 2 x ) = 1 2 ln ( tan 2 x + 1 1 tan 2 x ) = 1 2 ln ( sec 2 x ( sec 2 x 2 ) ) = 1 2 ln ( ( sec 2 x 1 ) + 1 sec 2 x ) = 1 2 ln ( ( tan 2 x ) + 1 sec 2 x ) = 1 2 ln ( cos 2 x sin 2 x ) = 1 2 ln ( cos ( 2 x ) ) \text {tanh}^{-1} (\tan^2 x) = \frac {1}{2}\ln\left(\frac {\tan^2 x +1}{1 - \tan^2 x}\right) = \frac {1}{2}\ln\left(\frac {\sec^2 x}{-(\sec^2 x - 2)}\right) = -\frac {1}{2}\ln\left(\frac {-(\sec^2 x -1) + 1}{\sec^2 x}\right) = -\frac {1}{2}\ln\left(\frac {-(\tan^2 x) + 1}{\sec^2 x}\right) = -\frac {1}{2}\ln\left(\cos^2 x - \sin^2 x\right) = -\frac {1}{2}\ln\left(\cos(2x)\right)

Therefore, our integral is

1 2 0 1 2 π ln ( cos x ) d x \frac {-1}{2}\int_{0}^{\frac {1}{2}\pi} \ln(\cos x) dx

The above integral has the well-known value of π 2 ln ( 2 ) -\frac {\pi}{2}\ln(2) which can be evaluated like this . Which makes the answer π 4 ln ( 2 ) 0.544 \frac {\pi}{4}\ln(2) \approx \boxed {0.544} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...