Know your continued fractions

Geometry Level 4

8 sin π 10 cos π 5 + 4 sin π 10 + 1 = α + 1 α + 1 α + 1 α + 8\sin { \frac { \pi }{ 10 } \cos { \frac { \pi }{ 5 } } } +4\sin { \frac { \pi }{ 10 } } +1=\alpha +\cfrac { 1 }{ \alpha +\cfrac { 1 }{ \alpha +\cfrac { 1 }{ \alpha +\ddots } } } Find α \alpha .


This problem is original.

Image credit: Wikimedia Levochik


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jan 4, 2016

4 × 2 sin π 10 cos π 5 + 4 sin π 10 + 1 4\times\color{#3D99F6}{2 \sin \frac { \pi }{ 10 } \cos \frac { \pi }{ 5 }}+4\sin \frac { \pi }{ 10 } +1 = 4 ( sin 3 π 10 sin π 10 ) + 4 sin π 10 + 1 =4(\sin\frac{3{\pi}}{10}-\sin\frac{\pi}{10})+4\sin \frac{\pi}{10}+1 = 4 sin 3 π 10 + 1 = 4 ( 5 + 1 4 ) + 1 = 5 + 2 =4\sin\frac{3\pi}{10}+1=4(\color{magenta}{\frac{\sqrt{5}+1}{4}})+1=\sqrt{5}+2 Now , 5 + 2 = α + 1 5 + 2 \text{Now}, \space \sqrt{5}+2=\alpha+\frac{1}{\sqrt{5}+2} α = ( 5 + 2 ) ( 1 5 + 2 ) \alpha=(\sqrt{5}+2)-(\frac{1}{\sqrt{5}+2}) α = 4 \color{#20A900}{\Rightarrow\alpha=4}\\

Looks like your first latex soln.!Great job!!

Rohit Udaiwal - 5 years, 5 months ago

Log in to reply

Learning to use latex.. :) . Are there any flaws in the solution that made you conclude this? (just asking)

Rishabh Jain - 5 years, 5 months ago

Log in to reply

When writing text use this format \text{...} otherwise the text will appear in italics.For eg., H i R i s h a b h Hi~Rishabh (italics) and Hi Rishabh \text{Hi Rishabh} .You can see the difference!Use \ before sin,and your solutions will become flawless!btw(+1)

Rohit Udaiwal - 5 years, 5 months ago

Log in to reply

@Rohit Udaiwal T h a n k s \huge\color{#69047E}{Thanks}\\

Rishabh Jain - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...