Know your limits

Calculus Level 2

lim ( x , y ) ( 1 , 1 ) x 2 y y 2 x x y = ? \lim _{ \left( x,y \right) \rightarrow \left( 1,1 \right) }{ \frac { { x }^{ 2 }y-{ y }^{ 2 }x }{ \sqrt { x } -\sqrt { y } } \quad =\quad ? }

Note: Enter 999 if the limit does not exist or is not defined.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zeeshan Ali
Jan 23, 2016

lim ( x , y ) ( 1 , 1 ) x 2 y y 2 x x y = lim ( x , y ) ( 1 , 1 ) x y ( x y ) x y = lim ( x , y ) ( 1 , 1 ) x y ( x y ) ( x + y ) x y = lim ( x , y ) ( 1 , 1 ) x y ( x + y ) = 1 × 1 × ( 1 + 1 ) = 02 \lim _{ \left( x,y \right) \rightarrow \left( 1,1 \right) }{ \frac { { x }^{ 2 }y-{ y }^{ 2 }x }{ \sqrt { x } -\sqrt { y } } \quad =\quad } \lim _{ \left( x,y \right) \rightarrow \left( 1,1 \right) }{ \frac { { x }y(x-y) }{ \sqrt { x } -\sqrt { y } } \quad =\quad } \lim _{ \left( x,y \right) \rightarrow \left( 1,1 \right) }{ \frac { { x }y(\sqrt { x } -\sqrt { y } )(\sqrt { x } +\sqrt { y } ) }{ \sqrt { x } -\sqrt { y } } \quad =\quad } \lim _{ \left( x,y \right) \rightarrow \left( 1,1 \right) }{ { \quad x }y(\sqrt { x } +\sqrt { y } )\quad =\quad 1\times 1\times (\sqrt { 1 } +\sqrt { 1 } ) } \quad =\quad \boxed{02}

Should not (x,y) \rightarrow (1,1).

Rishabh Jain - 5 years, 4 months ago

Log in to reply

Oops! Well... I've mistaken it as (0,0). Thanks.. I have edited the problem now

Zeeshan Ali - 5 years, 4 months ago

Log in to reply

Well it has cost me good 100 points.. :D ......BTW no problem..

Rishabh Jain - 5 years, 4 months ago

Log in to reply

@Rishabh Jain Thanks. Those who answered 0 have been marked correct.

In future, if you spot any errors with a problem, you can “report” it by selecting "report problem" in the “dot dot dot” menu in the lower right corner. This will notify the problem creator who can fix the issues.

Calvin Lin Staff - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...