Reciprocal of Square Roots Sum

Algebra Level 4

S = 1 1 + 3 + 1 5 + 7 + 1 9 + 11 + + 1 9997 + 9999 S = \frac 1{\sqrt 1 + \sqrt 3 } + \frac 1{\sqrt 5 + \sqrt 7 } + \frac 1{\sqrt 9 + \sqrt {11} } + \cdots + \frac 1{\sqrt {9997} + \sqrt {9999}}

Find S \lfloor S \rfloor .

Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Calvin Lin Staff
Oct 27, 2016

This solution is similar to Dhira's, and fills in the gap to show that S < 25 S < 25 .

Define:

S = 1 1 + 3 + 1 5 + 7 + 1 9 + 11 + + 1 9997 + 9999 S = \frac 1{\sqrt {1} + \sqrt {3} } + \frac 1{\sqrt {5} + \sqrt {7} } + \frac 1{\sqrt {9} + \sqrt {11} } + \cdots + \frac 1{\sqrt {9997} + \sqrt {9999}} Q = 1 3 + 5 + 1 7 + 9 + 1 11 + 13 + + 1 9999 + 10001 Q = \frac 1{\sqrt {3} + \sqrt {5} } + \frac 1{\sqrt {7} + \sqrt {9} } + \frac 1{\sqrt {11} + \sqrt {13} } + \cdots + \frac 1{\sqrt {9999} + \sqrt {10001}}

By comparing termwise, we see that S > Q S > Q .
By comparing a term of Q with the subsequent term of S, we see that S 1 1 + 3 < Q S - \frac{1}{ \sqrt{ 1} + \sqrt{3} } < Q .

Hence, we conclude that 2 S 3 1 2 < S + Q < 2 S 2S - \frac{ \sqrt{3} - \sqrt{1} } { 2} < S + Q < 2S .

S + Q = 1 1 + 3 + 1 3 + 5 + 1 5 + 7 + + 1 9999 + 10001 = 1 1 + 3 . 3 1 3 1 + 1 3 + 5 . 5 3 5 3 + 1 5 + 7 . 7 5 7 5 + + 1 9999 + 10001 . 10001 9999 10001 9999 = 3 1 2 + 5 3 2 + 7 5 2 + + 10001 9999 2 = 1 2 + ( 3 2 3 2 ) + ( 5 2 5 2 ) + + ( 9999 2 9999 2 ) + 10001 2 = 10001 1 2 \begin{aligned} S + Q & = \frac 1{\sqrt {1} + \sqrt {3} } + \frac 1{\sqrt {3} + \sqrt {5} } + \frac 1{\sqrt {5} + \sqrt {7} } + \cdots + \frac 1{\sqrt {9999} + \sqrt {10001}}\\ \\ & = \frac 1{\sqrt {1} + \sqrt {3} }.\frac {\sqrt {3} - \sqrt {1}}{\sqrt {3} - \sqrt {1}} + \frac 1{\sqrt {3} + \sqrt {5} }.\frac {\sqrt {5} - \sqrt {3}}{\sqrt {5} - \sqrt {3}} + \frac 1{\sqrt {5} + \sqrt {7} }.\frac {\sqrt {7} - \sqrt {5}}{\sqrt {7} - \sqrt {5}} + \cdots + \frac 1{\sqrt {9999} + \sqrt {10001}}.\frac {\sqrt {10001} - \sqrt {9999}}{\sqrt {10001} - \sqrt {9999}} \\ \\ & = \frac {\sqrt {3} - \sqrt {1}}2 + \frac {\sqrt {5} - \sqrt {3}}2 + \frac {\sqrt {7} - \sqrt {5}}2 +\cdots + \frac {\sqrt {10001} - \sqrt {9999}}2 \\ \\ & = - \frac {\sqrt {1}}2 + (\frac {\sqrt {3}}2 - \frac {\sqrt {3}}2) + (\frac {\sqrt {5}}2 - \frac {\sqrt {5}}2) + \cdots +(\frac {\sqrt {9999}}2 - \frac {\sqrt {9999}}2) + \frac {\sqrt {10001}}2 \\ \\ & = \frac {\sqrt {10001} - \sqrt 1}2 \\ \\ \end{aligned}

Hence, our orignal inequality is states:

2 S 3 1 2 < 10001 1 2 < 2 S 2 S - \frac { \sqrt{3} - \sqrt{1 } } { 2 } < \frac { \sqrt{ 10001 } - \sqrt{ 1} } { 2 } < 2 S

Evaluating the radicals, we get that

49.503 < 2 S < 49.868 49.503 < 2S < 49.868

Hence, S = 24 \lfloor S \rfloor = 24 .

great ! can you tell how to think about such things like taking Q in the picture ?

hiroto kun - 4 years, 5 months ago

Log in to reply

Q is a "natural" consideration in part because
1. Q Q is very similar to S. Other things to consider are denominators of 2 + 4 \sqrt{2} + \sqrt{4} and 4 + 6 \sqrt{ 4} + \sqrt{ 6 } .
2. S + Q S + Q is a well-known telescoping series.

Calvin Lin Staff - 4 years, 5 months ago
Dhira Tengara
Jun 15, 2016

Let S = 1 1 + 3 + 1 5 + 7 + 1 9 + 11 + + 1 9997 + 9999 S = \frac 1{\sqrt {1} + \sqrt {3} } + \frac 1{\sqrt {5} + \sqrt {7} } + \frac 1{\sqrt {9} + \sqrt {11} } + \cdots + \frac 1{\sqrt {9997} + \sqrt {9999}} and Q = 1 3 + 5 + 1 7 + 9 + 1 11 + 13 + + 1 9999 + 10001 Q = \frac 1{\sqrt {3} + \sqrt {5} } + \frac 1{\sqrt {7} + \sqrt {9} } + \frac 1{\sqrt {11} + \sqrt {13} } + \cdots + \frac 1{\sqrt {9999} + \sqrt {10001}} We can see that S>Q S + Q = 1 1 + 3 + 1 3 + 5 + 1 5 + 7 + + 1 9999 + 10001 = 1 1 + 3 . 3 1 3 1 + 1 3 + 5 . 5 3 5 3 + 1 5 + 7 . 7 5 7 5 + + 1 9999 + 10001 . 10001 9999 10001 9999 = 3 1 2 + 5 3 2 + 7 5 2 + + 10001 9999 2 = 1 2 + ( 3 2 3 2 ) + ( 5 2 5 2 ) + + ( 9999 2 9999 2 ) + 10001 2 = 10001 1 2 49.5 2 S > 49.5 S > 49.5 2 > 24 S = 24 \begin{aligned} S + Q & = \frac 1{\sqrt {1} + \sqrt {3} } + \frac 1{\sqrt {3} + \sqrt {5} } + \frac 1{\sqrt {5} + \sqrt {7} } + \cdots + \frac 1{\sqrt {9999} + \sqrt {10001}}\\ \\ & = \frac 1{\sqrt {1} + \sqrt {3} }.\frac {\sqrt {3} - \sqrt {1}}{\sqrt {3} - \sqrt {1}} + \frac 1{\sqrt {3} + \sqrt {5} }.\frac {\sqrt {5} - \sqrt {3}}{\sqrt {5} - \sqrt {3}} + \frac 1{\sqrt {5} + \sqrt {7} }.\frac {\sqrt {7} - \sqrt {5}}{\sqrt {7} - \sqrt {5}} + \cdots + \frac 1{\sqrt {9999} + \sqrt {10001}}.\frac {\sqrt {10001} - \sqrt {9999}}{\sqrt {10001} - \sqrt {9999}} \\ \\ & = \frac {\sqrt {3} - \sqrt {1}}2 + \frac {\sqrt {5} - \sqrt {3}}2 + \frac {\sqrt {7} - \sqrt {5}}2 +\cdots + \frac {\sqrt {10001} - \sqrt {9999}}2 \\ \\ & = - \frac {\sqrt {1}}2 + (\frac {\sqrt {3}}2 - \frac {\sqrt {3}}2) + (\frac {\sqrt {5}}2 - \frac {\sqrt {5}}2) + \cdots +(\frac {\sqrt {9999}}2 - \frac {\sqrt {9999}}2) + \frac {\sqrt {10001}}2 \\ \\ & = \frac {\sqrt {10001} - \sqrt 1}2 \\ \\ & \approx 49.5 \\ \\ 2S & > 49.5 \\ \\ S & > \frac {49.5}2 > 24 \\ \\ \lfloor {S} \rfloor & = 24 \end{aligned}

You would need to add why S < 25 S<25 .

Chaebum Sheen - 4 years, 8 months ago

Log in to reply

it's the floor of S

Dhira Tengara - 4 years, 7 months ago

Log in to reply

I mean, it is also possible that S > 25 S>25 as well. S S could be 25.1... 25.1... from what you've shown above.

Chaebum Sheen - 4 years, 7 months ago

Log in to reply

@Chaebum Sheen @Chaebum Sheen Are you able to add a correct solution to this problem? That woudl be greatly appreciated.

Calvin Lin Staff - 4 years, 7 months ago

That's a good point. Currently we just have S > Q S > Q and so S > 24 S > 24 . We have yet to show that S < 25 S < 25 in order to conclude that S = 24 \lfloor S \rfloor = 24 .

@Dhira Tengara Do you see how to fill in the gap? Hint, do the same thing, just change S slightly.

Calvin Lin Staff - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...