Last 4

Find the last four digits of 2 2016 . 2^{2016}.


This is part of the set My Problems and THRILLER .


The answer is 5536.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Otto Bretscher
Aug 27, 2015

Using Euler's totient function, we have 2 500 1 ( m o d 625 ) 2^{500}\equiv1\pmod{625} so 2 2000 1 ( m o d 5 4 ) . 2^{2000}\equiv1\pmod{5^4}. Multiplying through with 2 4 2^4 , we find 2 2004 2 4 ( m o d 1 0 4 ) 2^{2004}\equiv2^4\pmod{10^4} . Finally 2 2016 2 16 = 65536 5536 ( m o d 10000 ) 2^{2016}\equiv2^{16}=65536\equiv\boxed{5536}\pmod{10000}

sir, how did you multiply 2^4 in mod5^4

Dev Sharma - 5 years, 7 months ago

Log in to reply

If 2 2000 1 ( m o d 5 4 ) 2^{2000}\equiv 1\pmod{5^4} , then, multiplying everything with 2 4 2^4 , we can conclude that 2 2004 2 4 ( m o d 1 0 4 ) 2^{2004}\equiv {2^4} \pmod{10^4} .

Otto Bretscher - 5 years, 7 months ago

Log in to reply

i learn a new property. In general, a = b ( m o d n ) a = b (modn) then a m = b m ( m o d n m ) am = bm(modnm) ??

Dev Sharma - 5 years, 7 months ago

Log in to reply

@Dev Sharma Yes, exactly: If a b = k n a-b=kn for some integer k k , then a m b m = k n m am-bm=knm

Otto Bretscher - 5 years, 7 months ago

Log in to reply

@Otto Bretscher thanks sirg

Dev Sharma - 5 years, 7 months ago

@Dev Sharma This should be obvious by elementary modular arithmetic. If a , b , m , n a,b,m,n be integers with m , n m,n non-zero, then,

a b ( m o d n ) q Z a b = n q a m b m = n m q n m a m b m a m b m ( m o d n m ) a\equiv b\pmod{n}\iff\exists q\in\Bbb Z\mid a-b=nq\iff am-bm=nmq\iff nm\mid am-bm\iff am\equiv bm\pmod{nm}

Prasun Biswas - 4 years, 11 months ago

@Dev Sharma How come a = b it should be a b a = b \text{ it should be } a \equiv b Isn't it?

Syed Hamza Khalid - 2 years, 9 months ago

How did you simplify from 2^2016 to 2^16 in mod 10000? phi(10000) = 4000, not 2000, so what is the deal with it?

Zyberg NEE - 4 years, 11 months ago

Log in to reply

He doesn't simplify there. Note that he establishes 2 2004 2 4 ( m o d 1 0 4 ) 2^{2004}\equiv 2^4\pmod{10^4} first. Multiply both sides of the congruence by 2 12 2^{12} and you get 2 2016 2 16 ( m o d 1 0 4 ) 2^{2016}\equiv 2^{16}\pmod{10^4} .

Prasun Biswas - 4 years, 11 months ago

Yay. New modular property

Bostang Palaguna - 2 years, 7 months ago
Jason Martin
Aug 26, 2015

Note that the last 4 digits of 2 2016 2^{2016} is just its remainder upon division by 10000 10000 . Thus, we have 2 2016 = 4 1008 = 1 6 504 = 25 6 252 553 6 126 729 6 63 7296 729 6 62 7296 161 6 31 ( 7296 1616 ) 145 6 15 ( 336 1456 ) 993 6 7 ( 9216 9936 ) 409 6 3 ( 176 4096 7216 ) 5536 m o d 10 , 000 2^{2016}=4^{1008}=16^{504}=256^{252} \equiv 5536^{126} \equiv 7296^{63} \equiv 7296 \cdot 7296^{62} \equiv \\7296 \cdot 1616^{31} \equiv (7296 \cdot 1616) \cdot 1456^{15} \equiv (336 \cdot 1456) \cdot 9936^{7} \equiv \\(9216 \cdot 9936) \cdot 4096^{3} \equiv (176 \cdot 4096 \cdot 7216) \equiv \boxed{5536} \mod{10,000}

This is just the modular exponentiation algorithm.

Did same!!

Dev Sharma - 5 years, 7 months ago
Ankit Kumar Jain
Aug 27, 2015

Simply used Euler's Theorem.

this is not an explanation of how did you solve it

Andrea Virgillito - 4 years, 8 months ago

Log in to reply

Please show euler theorem

Amit Kumar - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...