Find the last 4 digits of the decimal representation of
1 4 4 4 1 4 4 4 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
What is ϕ ?
Log in to reply
Euler's totient function as mentioned. Check out this link .
Log in to reply
I've known ϕ or φ to the golden ratio, 2 1 + 5 , which is a root of the quadratic equation, x 2 − x − 1 = 0 , which is the ratio, x + 1 : x = x : 1 .
Log in to reply
@. . – Well ϕ can be used for others too. Here is obviously not golden ratio. It is ϕ ( ⋅ ) with brackets behind,
1 2 3 4 |
|
The answer x can be computed using x ≡ 1 4 4 4 1 4 4 4 ( m o d 1 0 0 0 0 )
A simple solution is just to consider 1 4 4 4 as 3 8 × 2 1 6 so we can just square 1 4 4 4 sixteen times and cube it eight times performing modulo 10000 in each step. Modulo 10000 by hand is easy because it's just truncation. It will require 1 6 + 2 × 8 = 3 2 4-digit multiplications. We can apply Euler's Theorem and Chinese Remainder Theorem to reduce the exponent, but it becomes a much more complicated procedure.
x ≡ 1 4 4 4 3 8 × 2 1 6 ( m o d 1 0 0 0 0 )
x ≡ 5 1 3 6 3 8 × 2 1 5 ( m o d 1 0 0 0 0 )
x ≡ 8 4 9 6 3 8 × 2 1 4 ( m o d 1 0 0 0 0 )
x ≡ 2 0 1 6 3 8 × 2 1 3 ( m o d 1 0 0 0 0 )
x ≡ 4 2 5 6 3 8 × 2 1 2 ( m o d 1 0 0 0 0 )
x ≡ 3 5 3 6 3 8 × 2 1 1 ( m o d 1 0 0 0 0 )
x ≡ 3 2 9 6 3 8 × 2 1 0 ( m o d 1 0 0 0 0 )
x ≡ 3 6 1 6 3 8 × 2 9 ( m o d 1 0 0 0 0 )
x ≡ 4 3 4 5 3 8 × 2 8 ( m o d 1 0 0 0 0 )
x ≡ 7 9 3 6 3 8 × 2 7 ( m o d 1 0 0 0 0 )
x ≡ 9 6 3 8 × 2 6 ( m o d 1 0 0 0 0 )
x ≡ 9 2 1 6 3 8 × 2 5 ( m o d 1 0 0 0 0 )
x ≡ 4 6 5 6 3 8 × 2 4 ( m o d 1 0 0 0 0 )
x ≡ 8 3 3 6 3 8 × 2 3 ( m o d 1 0 0 0 0 )
x ≡ 8 8 9 6 3 8 × 2 2 ( m o d 1 0 0 0 0 )
x ≡ 8 8 1 6 3 8 × 2 1 ( m o d 1 0 0 0 0 )
x ≡ 1 8 5 6 3 8 ( m o d 1 0 0 0 0 )
Now we cube 8 times.
x ≡ 1 6 3 7 ( m o d 1 0 0 0 0 )
x ≡ 4 0 9 6 3 6 ( m o d 1 0 0 0 0 )
x ≡ 6 7 3 6 3 5 ( m o d 1 0 0 0 0 )
x ≡ 6 2 5 6 3 4 ( m o d 1 0 0 0 0 )
x ≡ 5 2 1 6 3 3 ( m o d 1 0 0 0 0 )
x ≡ 7 6 9 6 3 2 ( m o d 1 0 0 0 0 )
x ≡ 9 5 3 6 3 1 ( m o d 1 0 0 0 0 )
x ≡ 2 6 5 6 ( m o d 1 0 0 0 0 )
add a comment
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Euler's Theorem
Let N = 1 4 4 4 1 4 4 4 , we need to find N m o d 1 0 0 0 0 . Since 1444 and 10000 are not coprime integers, we shall consider the factors 2 4 = 1 6 and 5 4 = 6 2 5 of 10000 separately using Chinese remainder theorem .
Consider factor 16: N ≡ 0 (mod 16) .
Consider factor 625:
N ≡ 1 4 4 4 1 4 4 4 m o d ϕ ( 6 2 5 ) (mod 625) ≡ 1 4 4 4 1 4 4 4 m o d 5 0 0 (mod 625) ≡ 1 4 4 4 1 9 6 (mod 625) ≡ ( 1 0 0 0 + 4 4 4 ) 5 × 3 9 + 1 (mod 625) ≡ 4 4 4 1 9 5 ( 1 4 4 4 ) (mod 625) ≡ 4 1 9 5 1 1 1 1 9 5 ( 1 9 4 ) (mod 625) ≡ ( 5 − 1 ) 1 2 5 + 7 0 ( 1 1 0 + 1 ) 1 2 5 + 7 0 ( 1 9 4 ) (mod 625) ≡ ( − 1 ) 4 7 0 1 1 1 7 0 ( 1 9 4 ) (mod 625) ≡ ( 5 − 1 ) 7 0 ( 1 1 0 + 1 ) 7 0 ( 4 3 1 ) (mod 625) ≡ ( 2 7 0 ( 6 9 ) 5 2 − 7 0 ( 5 ) + 1 ) ( 2 7 0 ( 6 9 ) 1 1 0 2 + 7 0 ( 1 1 0 ) + 1 ) ( 4 3 1 ) (mod 625) ≡ ( 2 6 ) ( 4 5 1 ) ( 4 3 1 ) (mod 625) = 1 5 6 (mod 625) Since g cd ( 1 4 4 , 6 2 5 ) = 1 , Euler’s theorem applies. Euler’s totient function ϕ ( 6 2 5 ) = 5 0 0 By modulo inverse (see note)
Therefore,
N ⟹ 6 2 5 n + 1 5 6 n + 1 2 n ⟹ N ≡ 6 2 5 n + 1 5 6 ≡ 0 (mod 16) ≡ 0 (mod 16) ≡ 4 ≡ 6 2 5 ( 4 ) + 1 5 6 (mod 10000) ≡ 2 6 5 6 (mod 10000) where n ∈ Z
Note: 1 4 4 5 ≡ ( 1 0 0 + 4 4 ) 5 ≡ 4 4 5 ≡ ( 4 5 − 1 ) 5 ≡ 5 × 4 5 − 1 ≡ 2 2 4 (mod 500)
⟹ 1 4 4 × 1 4 4 4 1 4 4 × a b c 1 4 4 × a b 6 1 4 4 × a 9 6 1 4 4 × 1 9 6 ⟹ 1 4 4 4 ≡ 2 2 4 (mod 500) ≡ 2 2 4 (mod 500) ≡ 1 4 4 0 a b + 8 6 4 (mod 500) ≡ 1 4 4 0 0 a + 1 3 8 2 4 (mod 500) ≡ 2 8 2 2 4 ≡ 2 2 4 (mod 500) ≡ 1 9 6 (mod 500) Let 1 4 4 4 ≡ a b c ≡ 1 0 0 a + 1 0 b + c (mod 500)