Let Me Give You More Trouble

Calculus Level 4

lim x 0 1 k = 1 100 cos k x x 2 = ? \large \lim_{x \to 0} \frac{ 1- \displaystyle \prod_{k=1}^{100} \cos kx}{x^2} = \, ?

Bonus: Generalize for n n or lim x 0 1 k = 1 n cos k x x 2 \displaystyle \lim_{x \to 0} \frac{ 1-\prod_{k=1}^{n} \cos kx}{x^2} .


For other problems: Check your Calibre


The answer is 169175.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Guilherme Niedu
Mar 23, 2017

A slightly different solution...

When x x goes to 0, c o s ( k x ) cos(kx) goes to 1 ( k x ) 2 2 1 - \frac{(kx)^2}{2} . It is important to write the x 2 x^2 term, since it appears on the denominator. So:

= lim x 0 1 k = 1 n ( 1 ( k x ) 2 2 ) x 2 \large \displaystyle = \lim_{x\rightarrow 0} \frac{1 - \prod_{k=1}^n (1 - \frac{(kx)^2}{2})} {x^2}

= lim x 0 1 ( 1 k = 1 n ( k x ) 2 2 + O ( x 4 ) ) x 2 \large \displaystyle = \lim_{x\rightarrow 0} \frac{1 - (1 - \sum_{k=1}^n \frac{(kx) ^2} {2} + O(x^4)) } {x^2}

Since the terms x k , k > 2 x^k, k > 2 goes to 0 0 faster than x 2 x^2 for x 0 x \rightarrow 0 , we're looking only for the x 2 x^2 terms in the product. So:

= lim x 0 1 ( 1 k = 1 n ( k x ) 2 2 ) x 2 \large \displaystyle = \lim_{x\rightarrow 0} \frac{1 - (1 - \sum_{k=1}^n \frac{(kx) ^2} {2}) } {x^2}

The x 2 x^2 goes outside the sum and cancels out with the denominator:

= 1 2 k = 1 n k 2 \large \displaystyle = \frac12 \sum_{k=1}^n k^2

= n ( n + 1 ) ( 2 n + 1 ) 12 \large \displaystyle = \frac{n(n+1)(2n+1)}{12}

For n = 100 n = 100 this is equal to 169175 \color{#3D99F6} \boxed{ \large \displaystyle 169175}

Exactly the same!! L' Hopital is tedious here...!!

Aaghaz Mahajan - 3 years, 1 month ago

Log in to reply

Applying L'Hopital actually makes the problem easier.

Sravanth C. - 3 years ago

Log in to reply

@Sravanth Chebrolu Well yeah, you can say that but I find manipulating polynomials much easier.......Also, differentiating a large product gives me bad vibes......lol.......personal preferences......!!

Aaghaz Mahajan - 3 years ago

Log in to reply

@Aaghaz Mahajan Oh, haha. I was just upset that I misclicked "discuss solutions". Btw, are you related to Nihar Mahajan?

Sravanth C. - 3 years ago

Log in to reply

@Sravanth C. @Sravanth Chebrolu No man!! But I do solve his problems and they are AMAZING!!!! Why so?? The surname??!! Which class are you in??

Aaghaz Mahajan - 3 years ago

Log in to reply

@Aaghaz Mahajan Yeah, the surnames match, so I asked. I'm in 12th Grade now. What about you?

Sravanth C. - 3 years ago

Log in to reply

@Sravanth C. Ohh I see......Preparing for JEE then...!! I have entered class 11th...!! Trying to up my Physics.....lol......I srsly can't understand ROTATION!!!! And that is only what is left in my mechanics section......!!

Aaghaz Mahajan - 3 years ago

Log in to reply

@Aaghaz Mahajan Oh nice, good luck for your future! Yep, preparing for advanced now 3 days left ...

Sravanth C. - 3 years ago

Log in to reply

@Sravanth C. Oh Acha!! That's osm!! So you are giving Advance....!! Congrats!! I thought that you had entered 12th...lol....Best of Luck!! And what was your AIR??

Aaghaz Mahajan - 3 years ago

Log in to reply

@Aaghaz Mahajan It was bad, I screwed up. I got 5017 AIR.

Sravanth C. - 3 years ago

I clicked the view solution button by mistake, but applying L'Hopital make it very easy. Differentiating both numerator and denominator lim x 0 sin x ( cos 2 x cos 3 x cos 100 x ) 2 x + 2 sin 2 x ( cos x cos 3 x cos 100 x ) 2 x + 3 sin 3 x ( cos x cos 2 x cos 100 x ) 2 x \text{Differentiating both numerator and denominator}\\ \lim_{x\to 0}\frac{\sin x(\cos 2x\cos 3x \cdots\cos 100x)}{2x} +\frac{2\sin 2x(\cos x\cos 3x \cdots\cos 100x)}{2x}+ \frac{3\sin 3x(\cos x\cos 2x \cdots\cos 100x)}{2x} \cdots\\

Now just apply, lim x 0 sin x x = 1 \lim_{x\to 0}\dfrac{\sin x}{x} =1 we get: 1 2 2 + 2 2 2 + 3 2 2 + 10 0 2 2 = 169175 \frac{1^2}2 +\frac{2^2}{2}+\frac{3^2}{2}\cdots +\frac{100^2}{2}=\boxed{169175}

Sravanth C. - 3 years ago
Sabhrant Sachan
Mar 23, 2017

Relevant wiki: L'Hopital's Rule - Basic

Let f ( x ) = k = 1 n cos k x f(x) = \displaystyle\prod_{k=1}^{n}\cos{kx}

log ( f ( x ) ) = k = 1 n log ( cos k x ) differentiate w.r.t x on both sides 1 f ( x ) f ( x ) = k = 1 n 1 cos ( k x ) ( sin ( k x ) ) k f ( x ) = f ( x ) k = 1 n k tan ( k x ) f ( x ) = f ( x ) k = 1 n k tan ( k x ) f ( x ) k = 1 n k 2 sec 2 ( k x ) \begin{aligned} \log{(f(x))} & = \displaystyle\sum_{k=1}^{n} \log{(\cos{kx})} \hspace{5mm} \small\text{ differentiate w.r.t x on both sides } \\ \dfrac{1}{f(x)} \cdot f^{'}(x) & = \displaystyle\sum_{k=1}^{n} \dfrac{1}{\cos(kx)} \cdot -\left( \sin{(kx) } \right) \cdot k \\ f^{'}(x) & = -f(x) \displaystyle\sum_{k=1}^{n} k \tan{(kx)} \\ f^{''}(x) & =-f^{'}(x) \displaystyle\sum_{k=1}^{n} k\tan{(kx)}-f(x) \displaystyle\sum_{k=1}^{n} k^2 \sec^{2}{(kx)} \end{aligned}

Now , L = lim x 0 1 f ( x ) x 2 = lim x 0 f ( x ) 2 x = lim x 0 f ( x ) 2 = f ( 0 ) 2 L = \displaystyle \lim_{x \to 0 } \dfrac{1-f(x)}{x^2} = \lim_{x \to 0 } \dfrac{-f^{'}(x)}{2x} = \lim_{x \to 0 } \dfrac{-f^{''}(x)}{2} = \dfrac{-f^{''}(0)}{2}

f ( 0 ) = 0 1 k = 1 n k 2 1 = n ( n + 1 ) ( 2 n + 1 ) 6 f^{''}(0) = 0 - 1 \cdot \displaystyle\sum_{k=1}^{n} k^2 \cdot 1 = -\dfrac{n(n+1)(2n+1)}{6}

L = n ( n + 1 ) ( 2 n + 1 ) 12 \boxed{L = \dfrac{n(n+1)(2n+1)}{12}}

Yes. great solution . What I purely expected

Md Zuhair - 4 years, 2 months ago

Log in to reply

Thank you :)

Sabhrant Sachan - 4 years, 2 months ago

This problem is already posted here L'Hopital Isn't The Saviour This Time!

Kushal Bose - 4 years, 2 months ago

Log in to reply

Not this one brother. It has 23 and here it is 100

Md Zuhair - 4 years, 2 months ago

Log in to reply

Yeah, the same approach. Just different values. :-)

Tapas Mazumdar - 4 years, 2 months ago

Amar problem tar values change kore jhepe dili bol? xD

Arkajyoti Banerjee - 4 years, 2 months ago

Log in to reply

@Arkajyoti Banerjee Tomar kothay dada.. Eta Ekta Competitive Exam er. :P

Jai e hok.

Ha

Md Zuhair - 4 years, 2 months ago

Log in to reply

@Md Zuhair Ha, idea ta okhan thekei peyechilam. The actual question was lim x 0 1 cos x cos 2 x cos 3 x ( sin x ) 2 \lim_{x\to 0} \frac{1-\cos x \cos 2x \cos 3x}{(\sin x)^2}

Tao dekh, ami question er dhoron tai change korechi, just not the values. Tuio ei question ta ke ektu modify korte partis arki, setai bolchi.

Ar "dada" bolar ki hoyeche? Tuio 16 amio 16. Tui just 10th e ar ami 11th e. Age ta same.

Arkajyoti Banerjee - 4 years, 2 months ago

Log in to reply

@Arkajyoti Banerjee Amar toh just ei kichu din agei 16 holo.. Tomar kobe hoyeche? Amar EI December e holo

Md Zuhair - 4 years, 2 months ago

Log in to reply

@Md Zuhair Amar June e, but I don't think 6 months is enough for calling someone "dada" xD

Arkajyoti Banerjee - 4 years, 2 months ago

Log in to reply

@Arkajyoti Banerjee Haha... Half Dada :P

Md Zuhair - 4 years, 2 months ago

Log in to reply

@Md Zuhair Lol exams kemon jacche? Maths e full marks pachhis toh?

Arkajyoti Banerjee - 4 years, 2 months ago

Log in to reply

@Arkajyoti Banerjee Maths ajj chilo,

Ajj Exams Sesh

Tai sara din Brilliant Korchi..

And Maths e jani na.. Bhaloi Hoyeche

Md Zuhair - 4 years, 2 months ago
Chew-Seong Cheong
Apr 25, 2018

Relevant wiki: L'Hopital's Rule - Basic

L n = lim x 0 1 k = 1 n cos k x x 2 A 0/0 case, L’H o ˆ pital’s rule applies. = lim x 0 k = 1 n cos k x j = 1 n j tan j x 2 x Differentiate up and down; 0/0 case again. = lim x 0 k = 1 n cos k x ( j = 1 n j tan j x ) 2 + k = 1 n cos k x j = 1 n j 2 sec 2 j x 2 Differentiate up and down w.r.t. x again. = j = 1 n j 2 2 = n ( n + 1 ) ( 2 n + 1 ) 12 \begin{aligned} L_n & = \lim_{x \to 0} \frac {1-\prod_{k=1}^n \cos kx}{x^2} & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \lim_{x \to 0} \frac {\prod_{k=1}^n \cos kx\sum_{j=1}^n j \tan jx}{2x} & \small \color{#3D99F6} \text{Differentiate up and down; 0/0 case again.} \\ & = \lim_{x \to 0} \frac {- \prod_{k=1}^n \cos kx \left(\sum_{j=1}^n j \tan jx\right)^2 + \prod_{k=1}^n \cos kx\sum_{j=1}^n j^2 \sec^2 jx }2 & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \text{ again.} \\ & = \frac {\sum_{j=1}^n j^2}2 \\ & = \frac {n(n+1)(2n+1)}{12} \end{aligned}

Therefore, for n = 100 n=100 , L 100 = 100 ( 101 ) ( 201 ) 12 = 169175 L_{100} = \dfrac {100(101)(201)}{12} = \boxed{169175} .


Note:

f ( x ) = k = 1 n cos k x = cos ( x ) cos ( 2 x ) cos ( 3 x ) cos ( n x ) d f ( x ) d x = sin ( x ) k 1 n cos k x + 2 sin ( 2 x ) k 2 n cos k x + + n sin ( n x ) k n n cos k x = sin ( x ) cos ( x ) k = 1 n cos k x + 2 sin ( 2 x ) cos ( 2 x ) k = 1 n cos k x + + n sin ( n x ) cos ( n x ) k = 1 n cos k x = k = 1 n cos k x j = 1 n j tan j k \begin{aligned} f(x) & = \prod_{k=1}^n \cos kx = \cos(x)\cos(2x) \cos(3x) \cdots \cos(nx) \\ \frac {df(x)}{dx} & = \sin ({\color{#D61F06}x}) \prod_{\color{#D61F06} k\ne 1}^n \cos kx + 2 \sin ({\color{#D61F06}2x}) \prod_{\color{#D61F06} k\ne 2}^n \cos kx + \cdots + n \sin ({\color{#D61F06}n x}) \prod_{\color{#D61F06} k\ne n}^n \cos kx \\ & = \frac {\sin (x)}{\cos (x)} \prod_{\color{#3D99F6} k = 1}^n \cos kx + \frac {2\sin (2x)}{\cos (2x)} \prod_{\color{#3D99F6} k = 1}^n \cos kx + \cdots + \frac {n\sin (nx)}{\cos (nx)} \prod_{\color{#3D99F6} k = 1}^n \cos kx \\ & = \prod_{k = 1}^n \cos kx \sum_{j=1}^n j\tan jk \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...