Let The Telescoping Dance

Algebra Level 4

1 + 1 1 2 + 1 2 2 + 1 + 1 2 2 + 1 3 2 + 1 + 1 3 2 + 1 4 2 + . . . + 1 + 1 2013 2 + 1 2014 2 = a c b \sqrt {1 + \frac{1}{{{1^2}}} + \frac{1}{{{2^2}}}} + \sqrt {1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}}} + \sqrt {1 + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}}} + ... + \sqrt {1 + \frac{1}{{{{2013}^2}}} + \frac{1}{{{{2014}^2}}}} = \frac{{ac}}{b}

If three consecutive natural numbers a a , b b and c c satisfy the equation above, what is a + b + c a+b+c ?


The answer is 6042.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Avi Aryan
Jun 4, 2014

Observing the series --
1 + 1 1 + 1 4 = 3 2 \sqrt{ 1 + \frac{1}{1} + \frac{1}{4} } = \frac{3}{2}
1 + 1 4 + 1 9 = 7 6 \sqrt{ 1 + \frac{1}{4} + \frac{1}{9} } = \frac{7}{6}
1 + 1 9 + 1 16 = 13 12 \sqrt{ 1 + \frac{1}{9} + \frac{1}{16} } = \frac{13}{12}
1 + 1 16 + 1 25 = 21 20 \sqrt{ 1 + \frac{1}{16} + \frac{1}{25} } = \frac{21}{20}


So the general term can be put as -
t n = ( n + 1 ) 2 n ( n + 1 ) 2 ( n + 1 ) = n 2 + n + 1 n 2 + n t_{n} = \frac{ (n+1)^{2} - n }{ (n+1)^{2} - (n+1) } = \frac{ n^2 + n + 1 }{n^2 + n }
= 1 + 1 n ( n + 1 ) = 1 + 1 n 1 n + 1 = 1 + \frac{1}{n(n+1)} = 1 + \frac{1}{n} - \frac{1}{n+1}

Sum till n = 2013 n=2013
= 1 2013 + 1 1 1 2014 = ( 2013 ) ( 2015 ) 2014 = a c b = 1*2013 + \frac{1}{1} - \frac{1}{2014} = \frac{(2013) * (2015)}{2014} = \frac{ac}{b}

Hi! Great solution. Can you tell me how to find the the general term? Is it by observation..or any fornula?

Jayakumar Krishnan - 6 years, 10 months ago

Log in to reply

In this case it is by observation, but it can also be proved.

Omkar Kulkarni - 6 years, 1 month ago
Chew-Seong Cheong
Dec 12, 2017

The summation is given as follows, where n = 2013 n=2013 :

S = k = 1 n 1 + 1 k 2 + 1 ( k + 1 ) 2 = k = 1 n k 2 ( k + 1 ) 2 + ( k + 1 ) 2 + k 2 k 2 ( k + 1 ) 2 = k = 1 n k 4 + 2 k 3 + 3 k 2 + 2 k + 1 k 2 ( k + 1 ) 2 = k = 1 n ( k 2 + k + 1 ) 2 k 2 ( k + 1 ) 2 = k = 1 n k 2 + k + 1 k ( k + 1 ) = k = 1 n ( 1 + 1 k ( k + 1 ) ) = k = 1 n ( 1 + 1 k 1 k + 1 ) = n + 1 1 1 n + 1 = ( n + 1 ) 2 1 n + 1 = n ( n + 2 ) n + 1 \begin{aligned} S & = \sum_{k=1}^n \sqrt{1+\frac 1{k^2} + \frac 1{(k+1)^2}} \\ & = \sum_{k=1}^n \sqrt{\frac {k^2(k+1)^2 + (k+1)^2 + k^2}{k^2(k+1)^2}} \\ & = \sum_{k=1}^n \sqrt{\frac {k^4+2k^3+3k^2+2k+1}{k^2(k+1)^2}} \\ & = \sum_{k=1}^n \sqrt{\frac {(k^2+k+1)^2}{k^2(k+1)^2}} \\ & = \sum_{k=1}^n \frac {k^2+k+1}{k(k+1)} \\ & = \sum_{k=1}^n \left(1 + \frac 1{k(k+1)} \right) \\ & = \sum_{k=1}^n \left(1 + \frac 1k - \frac 1{k+1} \right) \\ & = n + \frac 11 - \frac 1{n+1} \\ & = \frac {(n+1)^2-1}{n+1} \\ & = \frac {n(n+2)}{n+1} \end{aligned}

a + b + c = n + n + 1 + n + 2 = 3 ( n + 1 ) = 3 ( 2014 ) = 6042 \implies a+b+c = n+n+1+n+2 = 3(n+1) = 3(2014) = \boxed{6042}

Mas Mus , nice problem. But you don't need to enter text in LaTex. It is difficult and it is not a standard practice in Brilliant/org. It doesn't necessary look good.

Chew-Seong Cheong - 3 years, 6 months ago

sir how did u do n+1/1*1/n+1

erica phillips - 3 years, 5 months ago

Log in to reply

There is no n + 1 1 × 1 n + 1 n+\dfrac 11 {\color{#D61F06}\times} \dfrac 1{n+1} but n + 1 1 1 n + 1 n+\dfrac 11 {\color{#3D99F6}-} \dfrac 1{n+1} .

Chew-Seong Cheong - 3 years, 5 months ago

Log in to reply

sir i am sorry but i typed my question wrong

erica phillips - 3 years, 5 months ago

Log in to reply

@Erica Phillips n + 1 1 1 n + 1 = n + 1 1 n + 1 = ( n + 1 ) 2 1 n + 1 \begin{aligned} n+\frac 11 - \frac 1{n+1} & = n + 1 - \frac 1{n+1} = \frac {(n+1)^2 - 1}{n+1}\end{aligned}

Chew-Seong Cheong - 3 years, 5 months ago
Joshua Williem
Feb 16, 2015

Did the same way

I Gede Arya Raditya Parameswara - 4 years, 5 months ago

thank u for explaining it well

erica phillips - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...