Let's do some calculus! (35)

Calculus Level 5

Let f ( x ) = cos ( cos ( cos ( cos ( cos ( cos ( cos ( cos x ) ) ) ) ) ) ) f(x) = \cos \left( \cos \left( \cos \left( \cos \left( \cos \left( \cos \left( \cos \left( \cos x \right) \right) \right) \right) \right) \right) \right) , and suppose that the number j j satisfies the equation j = cos j j = \cos j . If f ( j ) f'(j) can be expressed as a polynomial in j j as

f ( j ) = a j 8 + b j 6 + c j 4 + d j 2 + e f'(j) = a j^8 + b j^6 + c j^4 + d j^2 + e

where a , b , c , d a, \ b, \ c, \ d and e e are integers . Then find the value of a + b + c + d + e |a| + |b| + |c| + |d| + |e| .

Notation: f ( ) f'(\cdot) denotes the first derivative of the function f ( ) f(\cdot) .


For more problems on calculus, click here .


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

To shorten the presentation, let cos ( n ) = cos ( cos ( cos . . . cos x ) ) n × cos \cos^{(n)} = \underbrace{\cos(\cos(\cos ...\cos x))}_{n \times \cos} . Then, we have:

f ( x ) = cos ( 8 ) x f ( x ) = ( sin ( cos ( 7 ) x ) ) ( sin ( cos ( 6 ) x ) ) ( sin ( cos ( 5 ) x ) ) . . . ( sin ( cos x ) ) ( sin x ) \begin{aligned} f(x) & = \cos^{(8)} x \\ f'(x) & = \left(-\sin \left(\cos^{(7)}x\right)\right)\left(- \sin \left(\cos^{(6)}x\right) \right)\left(-\sin \left(\cos^{(5)}x\right)\right)...\left(-\sin \left(\cos x\right)\right)(-\sin x) \end{aligned}

Now, we are given cos j = j \cos j = j , cos ( cos j ) = cos j = j \implies \cos (\cos j) = \cos j = j , cos ( n ) j = j \implies \cos^{(n)} j = j , sin ( cos ( n ) j ) = sin j \implies \sin (\cos^{(n)}j) = \sin j . Therefore, we have:

f ( x ) = sin ( cos ( 7 ) x ) sin ( cos ( 6 ) x ) sin ( cos ( 5 ) x ) . . . sin ( cos x ) sin x = sin 8 j = ( 1 cos 2 j ) 7 1 cos 2 j = ( 1 cos 2 j ) 8 = ( 1 j 2 ) 4 By binomial expansion = 1 4 j 2 + 6 j 4 4 j 6 + j 8 \begin{aligned} f'(x) & = \sin \left(\cos^{(7)}x\right)\sin \left(\cos^{(6)}x\right)\sin \left(\cos^{(5)}x\right)...\sin \left(\cos x\right) \sin x \\ & = \sin^8 j \\ & = \left(\sqrt{1-\cos^2 j}\right)^7\sqrt{1-\cos^2 j} \\ & = \left(\sqrt{1-\cos^2 j}\right)^8 \\ & = \left(1-j^2 \right)^4 \quad \quad \small \color{#3D99F6}{\text{By binomial expansion}} \\ & = 1 - 4j^2 + 6j^4 - 4j^6 + j^8 \end{aligned}

a + b + c + d + e = 1 + 4 + 6 + 4 + 1 = 16 \implies |a|+|b|+|c|+|d|+|e| = |1|+|-4|+|6|+|-4|+|1| = \boxed{16}

Loved your solution!

Tapas Mazumdar - 4 years, 8 months ago

Log in to reply

Didnt you use same method?

Prince Loomba - 4 years, 4 months ago

Log in to reply

Yes. Except the shortening of the presentation. It was a good way to denote the function.

Tapas Mazumdar - 4 years, 4 months ago

Log in to reply

@Tapas Mazumdar Same here!

Prince Loomba - 4 years, 4 months ago

Shouldn't f ( x ) f'(x) have another sin x \sin{x} term?

Sumanth R Hegde - 4 years, 4 months ago

Log in to reply

He forgot. See the expression is sin^7 x not sin^8 x. Last sin will do that.

Prince Loomba - 4 years, 4 months ago

Log in to reply

Yea I know...I just wanted to indicate the small error

Sumanth R Hegde - 4 years, 4 months ago

Thanks, I have corrected the mistake.

Chew-Seong Cheong - 4 years, 4 months ago

Cosj=j so didn't the f(x)=j as j=cosj=coscosj?

prakhar nigam - 3 years, 4 months ago

Log in to reply

No, cos j = j \cos j = j , only when x = j x=j . f ( j ) = j f(j) = j not f ( x ) = j f(x) = j .

Chew-Seong Cheong - 3 years, 4 months ago
Romeo Gomez
Mar 10, 2019

We can get f ( j ) = sin 8 ( j ) , f'(j)=\sin^8(j), using the formulas sin ( x ) = e i x e i x 2 i \sin(x)=\frac{e^{ix}-e^{-ix}}{2i} and cos ( x ) = e i x + e i x 2 \cos(x)=\frac{e^{ix}+e^{-ix}}{2} we obtain the following result f ( j ) = ( 1 2 8 ) ( 2 cos ( 8 j ) 16 cos ( 6 j ) + 56 cos ( 4 j ) 112 cos ( 2 j ) + 70 ) , f'(j)=\left(\frac{1}{2^8}\right)\left(2\cos(8j)-16\cos(6j)+56\cos(4j)-112\cos(2j)+70\right), from our knowledge cos ( n x ) = T n ( cos ( x ) ) , \cos(nx)=T_n(\cos(x)), where T n T_n are the Chebsyhev polynomials; using this fact and doing some work f ( j ) = j 8 4 j 6 + 6 j 4 4 j 2 + 1 , f'(j)=j^8-4j^6+6 j^4-4j^2+1, so a + b + c + d + e = 16 |a|+|b|+|c|+|d|+|e|=16

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...