Let's do some calculus! (45)

Calculus Level 5

sin 4 x + cos 4 x sin 3 x + cos 3 x d x \large \displaystyle \int \dfrac{\sin^4 x + \cos^4 x}{\sin^3 x + \cos^3 x} \, dx

If the above integral can be represented as

sin x cos x + a b arctanh ( tan ( x 2 ) 1 a ) + a b arctan ( cos x sin x ) + C , \sin x - \cos x + \frac{\sqrt{a}}{b} \cdot \operatorname{arctanh} \left( \frac{ \tan \left( \frac x2 \right) - 1 }{\sqrt{a}} \right) + \frac ab \cdot \arctan \left( \cos x - \sin x \right) + C,

where a a and b b are coprime positive integers with a a square free, then evaluate a + b a+b .


Clarification: C C denotes the arbitrary constant of integration .


For more problems on calculus, click here .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Apr 12, 2017

Note that sin 4 x + cos 4 x sin 3 x + cos 3 x = ( sin x + cos x ) ( sin 3 x + cos 3 x ) sin x cos x ( sin 2 x + cos 2 x ) sin 3 x + cos 3 x = sin x + cos x sin x cos x ( sin x + cos x ) ( sin 2 x + cos 2 x ) sin x cos x ( sin x + cos x ) = sin x + cos x sin x cos x ( sin x + cos x ) ( 1 sin x cos x ) = sin x + cos x + 1 3 ( 1 sin x + cos x sin x + cos x 1 sin x cos x ) = sin x + cos x 2 3 sin x + cos x 1 + ( cos x sin x ) 2 + 1 3 ( sin x + cos x ) \begin{aligned} \frac{\sin^4x + \cos^4x}{\sin^3x + \cos^3x} & = \frac{(\sin x + \cos x)(\sin^3x + \cos^3x) - \sin x \cos x(\sin^2x + \cos^2x)}{\sin^3x + \cos^3x} \\ & = \sin x + \cos x - \frac{\sin x \cos x}{(\sin x + \cos x)(\sin^2x + \cos^2x) - \sin x \cos x(\sin x + \cos x)} \\ & = \sin x + \cos x - \frac{\sin x \cos x}{(\sin x + \cos x)(1 - \sin x \cos x)} \\ & = \sin x + \cos x + \tfrac13\left(\frac{1}{\sin x + \cos x} - \frac{\sin x + \cos x}{1 - \sin x \cos x}\right) \\ & = \sin x + \cos x - \tfrac23 \frac{\sin x + \cos x}{1 + (\cos x - \sin x)^2} + \frac{1}{3(\sin x + \cos x)} \end{aligned} and so sin 4 x + cos 4 x sin 3 x + cos 3 x d x = sin x cos x + 2 3 tan 1 ( cos x sin x ) + d x 3 ( sin x + cos x ) \int \frac{\sin^4x + \cos^4x}{\sin^3x + \cos^3x}\,dx \; = \; \sin x - \cos x +\tfrac23\tan^{-1}\big(\cos x - \sin x) + \int \frac{dx}{3(\sin x + \cos x)} Now the substitution t = tan 1 2 x t = \tan\tfrac12x yields d x sin x + cos x = 1 + t 2 2 t + ( 1 t 2 ) 2 d t 1 + t 2 = 2 d t 1 + 2 t t 2 = 2 d t 2 ( t 1 ) 2 = 2 tanh 1 ( 1 2 ( t 1 ) ) + c \begin{aligned} \int \frac{dx}{\sin x + \cos x} & = \int \frac{1 + t^2}{2t + (1-t^2)}\, \frac{2\,dt}{1+t^2} \; = \; 2\int \frac{dt}{1 + 2t - t^2} \\ & = 2\int \frac{dt}{2 - (t-1)^2} \; = \; \sqrt{2}\tanh^{-1}\big(\tfrac{1}{\sqrt2}(t-1)\big) + c \end{aligned} and hence sin 4 x + cos 4 x sin 3 x + cos 3 x d x = sin x cos x + 2 3 tan 1 ( cos x sin x ) + 2 3 tanh 1 ( tan ( 1 2 x ) 1 2 ) + C \int \frac{\sin^4x + \cos^4x}{\sin^3x + \cos^3x}\,dx \; = \; \sin x - \cos x + \tfrac23\tan^{-1}\big(\cos x - \sin x) + \frac{\sqrt{2}}{3}\tanh^{-1}\Big(\frac{\tan(\tfrac12x)-1}{\sqrt{2}}\Big) + C so that a = 2 , b = 3 a=2,b=3 , and the answer is 5 \boxed{5} .

Most of the terms in the expression to be derived already give one a hint about which functions to pick. Maybe I should have omitted some more key hints here. Don't you think?

P.S. Your solution is as great as always sir!

Tapas Mazumdar - 4 years, 1 month ago

Log in to reply

Yes the term s i n x c o s x sinx-cosx and a r c t a n ( c o s x s i n x ) arctan(cosx-sinx) gives a hint of what is to be substituted.You should have tried to change to some other form just for confusion.

Spandan Senapati - 4 years, 1 month ago

Log in to reply

Yes exactly! Sad I noticed it later after I had already uploaded the problem. Still it's up level 5 so I guess it's good enough.

Tapas Mazumdar - 4 years, 1 month ago

Log in to reply

@Tapas Mazumdar Yes its a good one on manipulations.

Spandan Senapati - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...