Let's do some calculus! (47)

Calculus Level 5

0 1 { 1 x 2017 } d x \large \int_0^1 \left\{ \dfrac{1}{\sqrt[2017] x} \right\} \, \mathrm{d}x

If the value of the above integral can be represented in the closed form as a b ζ ( c ) \dfrac{a}{b} - \zeta (c) where a a and b b are co-prime integers, then evaluate a + b + c a+b+c .

Notations:

Check out this problem if you liked this one.


For more problems on calculus, click here .


The answer is 6050.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
May 27, 2017

Lemma:

0 1 { 1 x k } d x = k k 1 ζ ( k ) \int_0^1 \left\{ \dfrac{1}{\sqrt[k] x} \right\} \, \mathrm{d}x = \dfrac{k}{k-1} - \zeta(k)

* This implies that the value of our integral is 2017 2016 ζ ( 2017 ) \dfrac{2017}{2016} - \zeta(2017) , which gives a + b + c = 6050 a+b+c = \boxed{6050} .

Proof:

Let

I = 0 1 { 1 x k } d x I = \int_0^1 \left\{ \dfrac{1}{\sqrt[k] x} \right\} \, \mathrm{d}x

Make the substitution t = 1 x t = \dfrac 1x , this gives d t = 1 x 2 d x \mathrm{d} t = - \dfrac{1}{x^2} \mathrm{d} x and 0 1 1 \displaystyle \int_0^1 \mapsto \int_{\infty}^1 . So we get

I = 0 1 { 1 x k } ( x 2 ) ( 1 x 2 ) d x = 1 { t k } t 2 d t = 1 { t k } t 2 d t I = \int_0^1 \left\{ \dfrac{1}{\sqrt[k] x} \right\} \cdot (-x^2) \cdot \left( - \dfrac{1}{x^2} \right) \, \mathrm{d}x = - \int_{\infty}^1 \dfrac{ \left\{ \sqrt[k] t \right\} }{t^2} \, \mathrm{d} t = \int_1^{\infty} \dfrac{ \left\{ \sqrt[k] t \right\} }{t^2} \, \mathrm{d} t

Again make a substitution u = t 1 k u = t^{\frac 1k} , this gives d u = 1 k t 1 k k d t \mathrm{d} u = \dfrac 1k \cdot t^{\frac{1-k}{k}} \mathrm{d} t and 1 1 \displaystyle \int_1^{\infty} \mapsto \int_1^{\infty} . We get

I = 1 { t k } t 2 d t = 1 { t k } t 2 k t k 1 k ( 1 k t 1 k k ) d t = k 1 { u } u 2 k u k 1 d u = k 1 { u } u k + 1 d u = k 1 u u u k + 1 d u = k 1 1 u k d u k 1 u u k + 1 d u = k 1 k 1 u k 1 1 k n = 1 n n + 1 n u k + 1 d u = k 1 k ( 1 ) k ( 1 k ) n = 1 n [ 1 u k ] n n + 1 = k k 1 + n = 1 [ n ( n + 1 ) k n n k ] = k k 1 + ( 1 2 k 1 1 k + 2 3 k 2 2 k + 3 4 k 3 3 k + ) = k k 1 + ( 1 1 k 1 2 k 1 3 k ) = k k 1 ζ ( k ) \begin{aligned} I &= \int_1^{\infty} \dfrac{ \left\{ \sqrt[k] t \right\} }{t^2} \, \mathrm{d} t \\ &= \int_1^{\infty} \dfrac{ \left\{ \sqrt[k] t \right\} }{t^2} \cdot k t^{\frac{k-1}{k}} \cdot \left( \dfrac 1k t^{\frac{1-k}{k}} \right) \, \mathrm{d} t \\ &= k \int_1^{\infty} \dfrac{ \left\{ u \right\} }{ u^{2k} } \cdot u^{k-1} \, \mathrm{d} u \\ &= k \int_1^{\infty} \dfrac{\left\{ u \right\} }{ u^{k+1} } \mathrm{d} u \\ &= k \int_1^{\infty} \dfrac{u - \left\lfloor u \right\rfloor}{ u^{k+1} } \mathrm{d} u \\ &= k \int_1^{\infty} \dfrac{1}{u^k} \mathrm{d} u - k \int_1^{\infty} \dfrac{ \left\lfloor u \right\rfloor }{u^{k+1}} \mathrm{d} u \\ &= \dfrac{k}{1-k} \cdot \dfrac{1}{u^{k-1}} { {\huge|}_1^{\infty}} - k \sum_{n=1}^{\infty} \int_n^{n+1} \dfrac{n}{u^{k+1}} \mathrm{d} u \\ &= \dfrac{k}{1-k} \cdot (-1) - k \left( - \dfrac 1k \right) \sum_{n=1}^{\infty} n \cdot \left[ \dfrac{1}{u^k} \right] { {\huge|}_n^{n+1}} \\ &= \dfrac{k}{k-1} + \sum_{n=1}^{\infty} \left[ \dfrac{n}{ (n+1)^k } - \dfrac{n}{n^k} \right] \\ &= \dfrac{k}{k-1} + \left( \dfrac{1}{2^k} - \dfrac{1}{1^k} + \dfrac{2}{3^k} - \dfrac{2}{2^k} + \dfrac{3}{4^k} - \dfrac{3}{3^k} + \cdots \right) \\ &= \dfrac{k}{k-1} + \left( - \dfrac{1}{1^k} - \dfrac{1}{2^k} - \dfrac{1}{3^k} - \cdots \right) \\ &= \dfrac{k}{k-1} - \zeta(k) \end{aligned}

Q . E . D . \mathbf{Q.E.D.}

I was going to post it. But you posted. Nice Solution. :)

Md Zuhair - 4 years ago

Log in to reply

I apologize for this. Next problem is yours! ;)

Tapas Mazumdar - 4 years ago

Log in to reply

No no. Which problem i can solve. That is only mynes. Or else, some of your problems are tough for me to handle

Md Zuhair - 4 years ago

@Tapas Mazumdar da.. see my new problem

If you can solve. Post a solution

Md Zuhair - 4 years ago

Log in to reply

@Md Zuhair I think you've made some typo in your problem, look through these:

  • What is k k ?
  • Please add d x \mathrm{d} x .

Tapas Mazumdar - 4 years ago

Log in to reply

@Tapas Mazumdar Ya done corrections

Md Zuhair - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...