Let's do some calculus! (5)

Calculus Level 4

f ( x ) = x ( 1 + x n ) 1 / n n 2 g ( x ) = f f f f f occurs n times ( x ) \begin{aligned} f(x) & =\dfrac{x}{{\left(1+x^{n}\right)}^{{1}/{n}}} & \forall ~n \ge 2 \\ g(x) & =\underbrace{f \circ f \circ f \circ \cdots f}_{f \text{ occurs } n \text{ times}}\left(x\right) \end{aligned}

For functions f f and g g as defined above, which of the following is an antiderivative of x n 2 g ( x ) d x \displaystyle \int x^{n-2} g(x) \, dx ?

Clarification : C C denotes the arbitrary constant of integration .


For more problems on calculus, click here .
( 1 + n x n ) 1 1 n n ( n 1 ) + C \dfrac {\left(1+nx^n\right)^{1-\frac 1n}}{n(n-1)} + C ( 1 + n x n ) 1 + 1 n n ( n + 1 ) + C \dfrac{\left(1+nx^n\right)^{1+\frac{1}{n}}}{n(n+1)} + C ( 1 + n x n ) 1 + 1 n n + 1 + C \dfrac{\left(1+nx^n\right)^{1+\frac{1}{n}}}{n+1} + C ( 1 + n x n ) 1 1 n n 1 + C \dfrac{\left(1+nx^n\right)^{1-\frac{1}{n}}}{n-1} + C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 19, 2016

f ( x ) = x ( 1 + x n ) 1 n ( f ( x ) ) n = x n 1 + x n ( f f ( x ) ) n = ( f ( x ) ) n 1 + ( f ( x ) ) n = x n 1 + x n 1 + x n 1 + x n = x n 1 + 2 x n ( f f f ( x ) ) n = ( f f ( x ) ) n 1 + ( f f ( x ) ) n = x n 1 + 2 x n 1 + x n 1 + 2 x n = x n 1 + 3 x n = ( g ( x ) ) n = x n 1 + n x n g ( x ) = x ( 1 + n x n ) 1 n x n 2 g ( x ) d x = x n 1 ( 1 + n x n ) 1 n d x = ( 1 + n x n ) 1 1 n n ( n 1 ) + C \begin{aligned} f(x) & = \frac x{(1+x^n)^\frac 1n} \\ \implies (f(x))^n & = \frac {x^n}{1+x^n} \\ (f \circ f (x))^n & = \frac {(f(x))^n}{1+(f(x))^n} = \frac {\frac {x^n}{1+x^n}}{1+\frac {x^n}{1+x^n}} = \frac {x^n}{1+2x^n} \\ (f \circ f \circ f (x))^n & = \frac {(f \circ f(x))^n}{1+(f \circ f(x))^n} = \frac {\frac {x^n}{1+2x^n}}{1+\frac {x^n}{1+\color{#D61F06}{2}x^n}} = \frac {x^n}{1+\color{#D61F06}{3}x^n} \\ \cdots \quad & = \quad \cdots \\ \implies (g(x))^n & = \frac {x^n}{1+\color{#D61F06}{n}x^n} \\ g(x) & = \frac x{(1+nx^n)^\frac 1n} \\ \int x^{n-2} g(x) \ dx & = \int \frac {x^{n-1}}{(1+nx^n)^\frac 1n} dx \\ & = \boxed{\dfrac {(1+nx^n)^{1-\frac 1n}}{n(n-1)}+C} \end{aligned}

Tapas, I have edited your problem and the answer choices. Go through the LaTex codes. They can be simpler.

Chew-Seong Cheong - 4 years, 9 months ago

Log in to reply

Where can I find them?

Tapas Mazumdar - 4 years, 8 months ago

Log in to reply

If you are using a PC, place your mouse cursor on top of the formulas. Or at top right hand pull-down menu select Toggle LaTex.

Chew-Seong Cheong - 4 years, 8 months ago

Log in to reply

@Chew-Seong Cheong Yeah, I got it. Thanks!

Tapas Mazumdar - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...