Let's minimise sin!

Geometry Level 5

P n = k = 0 n 1 ( 1 2 sin ( 2 k π n ) ) P_n=\prod_{k=0}^{n-1}\left(1-2\sin\left(\frac{2k\pi}{n}\right)\right)

Find the minimal value of P n P_n , where n n is a positive integer.

If you come to the conclusion that no minimum is attained, enter 666 as your answer.


The answer is -3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Otto Bretscher
Oct 16, 2015

1 2 sin ( 2 k π n ) = 2 ( cos ( 2 k π n + π 2 ) cos ( 2 π 3 ) ) = 4 sin ( k π n + 7 π 12 ) sin ( k π n π 12 ) 1-2\sin\left(\frac{2k\pi}{n}\right)=2\left(\cos\left(\frac{2k\pi}{n}+\frac{\pi}{2}\right)-\cos\left(\frac{2\pi}{3}\right)\right)=-4\sin\left(\frac{k\pi}{n}+\frac{7\pi}{12}\right)\sin\left(\frac{k\pi}{n}-\frac{\pi}{12}\right) According to the formula discussed here , the product is P n = 4 ( 1 ) n + 1 sin ( 7 n π 12 ) sin ( n π 12 ) P_n=4(-1)^{n+1}\sin\left(\frac{7n\pi}{12}\right)\sin\left(\frac{n\pi}{12}\right)

P n P_n attains a minimum of 3 \boxed{-3} when n n is divisible by 4 but not by 12.

P n \displaystyle\quad P_n

= k = 0 n 1 ( 1 2 sin ( 2 k π n ) ) =\displaystyle\prod_{k=0}^{n-1}\left(1-2\sin\left(\frac{2k\pi}{n}\right)\right)

= k = 0 n 1 ( 1 i exp ( 2 k i π n ) + i exp ( 2 k π n ) ) =\displaystyle\prod_{k=0}^{n-1}\left(1-i\exp\left(\frac{-2ki\pi}{n}\right)+i\exp\left(\frac{2k\pi}{n}\right)\right)

= i n k = 0 n 1 ( i exp ( 2 k i π n ) + exp ( 2 k π n ) ) =\displaystyle i^n\prod_{k=0}^{n-1}\left(-i-\exp\left(\frac{-2ki\pi}{n}\right)+\exp\left(\frac{2k\pi}{n}\right)\right)

= i n exp ( ( n 1 ) i π ) k = 0 n 1 ( i exp ( 2 k π n ) 1 + exp ( 4 k π n ) ) =\displaystyle i^n\exp\left(-(n-1)i\pi\right)\prod_{k=0}^{n-1}\left(-i\exp\left(\frac{2k\pi}{n}\right)-1+\exp\left(\frac{4k\pi}{n}\right)\right)

= i n exp ( ( n 1 ) i π ) k = 0 n 1 ( exp ( 2 k π n ) exp ( i π 6 ) ) ( exp ( 2 k π n ) exp ( 5 i π 6 ) ) =\displaystyle i^n\exp\left(-(n-1)i\pi\right)\prod_{k=0}^{n-1}\left(\exp\left(\frac{2k\pi}{n}\right)-\exp\left(\frac{i\pi}{6}\right)\right)\left(\exp\left(\frac{2k\pi}{n}\right)-\exp\left(\frac{5i\pi}{6}\right)\right)

= i n exp ( ( n 1 ) i π ) k = 0 n 1 ( exp ( i π 6 ) exp ( 2 k π n ) ) ( exp ( 5 i π 6 ) exp ( 2 k π n ) ) =\displaystyle i^n\exp\left(-(n-1)i\pi\right)\prod_{k=0}^{n-1}\left(\exp\left(\frac{i\pi}{6}\right)-\exp\left(\frac{2k\pi}{n}\right)\right)\left(\exp\left(\frac{5i\pi}{6}\right)-\exp\left(\frac{2k\pi}{n}\right)\right)

= i n ( 1 ) n 1 ( exp ( n i π 6 ) 1 ) ( exp ( 5 n i π 6 ) 1 ) =\displaystyle i^n(-1)^{n-1}\left(\exp\left(\frac{ni\pi}{6}\right)-1\right)\left(\exp\left(\frac{5ni\pi}{6}\right)-1\right)

= ( i ) n ( exp ( n i π ) exp ( n i π 6 ) exp ( 5 n i π 6 ) + 1 ) =\displaystyle -(-i)^n\left(\exp\left(ni\pi\right)-\exp\left(\frac{ni\pi}{6}\right)-\exp\left(\frac{5ni\pi}{6}\right)+1\right)

= ( i ) n ( ( 1 ) n exp ( n i π 6 ) exp ( 5 n i π 6 ) + 1 ) =\displaystyle -(-i)^n\left((-1)^n-\exp\left(\frac{ni\pi}{6}\right)-\exp\left(\frac{5ni\pi}{6}\right)+1\right)

= i n ( 1 exp ( 7 n i π 6 ) exp ( 11 n i π 6 ) + ( 1 ) n ) =\displaystyle -i^n\left(1-\exp\left(\frac{7ni\pi}{6}\right)-\exp\left(\frac{11ni\pi}{6}\right)+(-1)^n\right)

= i n ( 1 2 cos ( 2 n π 3 ) exp ( 9 n i π 6 ) + ( 1 ) n ) =\displaystyle -i^n\left(1-2\cos\left(\frac{2n\pi}3\right)\exp\left(\frac{9ni\pi}{6}\right)+(-1)^n\right)

= i n ( 1 2 ( i ) n cos ( 2 n π 3 ) + ( 1 ) n ) =\displaystyle -i^n\left(1-2(-i)^n\cos\left(\frac{2n\pi}3\right)+(-1)^n\right)

Thus the function is shown to be periodic, with a period of 12 12 .

Trying all the 12 cases gives minimum 3 -3 .


Formulas used:

k = 0 n 1 ( z exp ( 2 k i π n ) ) = z n 1 \displaystyle\prod_{k=0}^{n-1}\left(z-\exp\left(\frac{2ki\pi}{n}\right)\right)=z^n-1

exp ( a i ) + exp ( b i ) = 2 cos ( a b 2 ) exp ( a i + b i 2 ) \displaystyle \exp(ai)+\exp(bi)=2\cos\left(\frac{a-b}2\right)\exp\left(\frac{ai+bi}2\right)

Kenny Lau - 5 years, 8 months ago

Log in to reply

Wow, this looks quite complex (upvote)! Thank you! I get -4 when I make n n a multiple of 12 in your formula...is there a sign error hidden somewhere?

Otto Bretscher - 5 years, 8 months ago

Log in to reply

Yes, and I fixed it.

Kenny Lau - 5 years, 8 months ago

Log in to reply

@Kenny Lau There is still a discrepancy between our formulas for odd n n . I believe the answer for n = 3 n=3 should be -2, for example.

Otto Bretscher - 5 years, 7 months ago

Log in to reply

@Otto Bretscher I hope it is alright now. I always make stupid careless mistakes.

Kenny Lau - 5 years, 7 months ago

+1 Did the same way. The product can also be written as P n 2 = k = 0 n 1 ( cos ( 6 k π n ) cos ( 2 k π n ) ) \displaystyle {P_{n}}^2 = \prod_{k=0}^{n-1} \left(\dfrac{\cos \left(\frac{6k\pi}{n}\right)}{\cos \left(\frac{2k\pi}{n}\right)}\right) Can we find a way to evaluate it through this route?

Ishan Singh - 5 years, 8 months ago

Log in to reply

The two products are not equal! (Square root can only be positive)

Kenny Lau - 5 years, 8 months ago

Log in to reply

@Kenny Lau Oh yeah, sorry. I mean,

P n = k = 0 n 1 ( 1 2 sin ( 2 k π n ) ) \displaystyle P_{n} = \prod_{k=0}^{n-1} \left(1-2\sin \left( \frac{2k\pi}{n} \right)\right)

= k = 0 n 1 ( 1 2 sin ( 2 ( n 1 k ) π n ) ) \displaystyle = \prod_{k=0}^{n-1} \left(1-2\sin \left( \frac{2(n-1-k)\pi}{n} \right)\right)

= k = 0 n 1 ( 1 + 2 sin ( 2 k π n ) ) \displaystyle = \prod_{k=0}^{n-1} \left(1+2\sin \left( \frac{2k\pi}{n} \right)\right)

P n 2 = k = 0 n 1 ( 1 4 sin 2 ( 2 k π n ) ) \displaystyle \implies {P_{n}}^2 = \prod_{k=0}^{n-1} \left( 1 - 4\sin^2\left(\frac{2k\pi}{n}\right) \right)

= k = 0 n 1 ( 4 cos 2 ( 2 k π n ) 3 ) \displaystyle = \prod_{k=0}^{n-1} \left( 4\cos^2\left(\frac{2k\pi}{n}\right) - 3 \right)

P n 2 = k = 0 n 1 ( cos ( 6 k π n ) cos ( 2 k π n ) ) \displaystyle \implies {P_{n}}^2 = \prod_{k=0}^{n-1} \left(\dfrac{\cos \left(\frac{6k\pi}{n}\right)}{\cos \left(\frac{2k\pi}{n}\right)}\right)

Ishan Singh - 5 years, 7 months ago

Log in to reply

@Ishan Singh Do we need to worry about the denominator being zero?

Otto Bretscher - 5 years, 7 months ago

Log in to reply

@Otto Bretscher We can take limit since it will be an indeterminate form (For m m zeroes in the denominator, there will be m m zeroes in the numerator)

Ishan Singh - 5 years, 7 months ago

Log in to reply

@Ishan Singh Limit with respect to what variable?

Otto Bretscher - 5 years, 7 months ago

Log in to reply

@Otto Bretscher Sorry, I guess the above transformation is valid only if n n is not a multiple of 4 4

Ishan Singh - 5 years, 7 months ago

Log in to reply

@Ishan Singh But multiples of 4 give us the solution... so, you may have to look for a different approach.

Otto Bretscher - 5 years, 7 months ago

@Ishan Singh You can just use the formula 2 cos θ = exp ( i θ ) + exp ( i θ ) 2\cos\theta=\exp(i\theta)+\exp(-i\theta) .

Kenny Lau - 5 years, 7 months ago

Log in to reply

@Kenny Lau I know that, but I was hoping to calculate the more general product k = 0 n 1 cos ( r k π n ) \displaystyle \prod_{k=0}^{n-1} \cos \left(\frac{rk\pi}{n}\right) , where r r is a positive integer and then put values for r r . If we simplify it using complex numbers, in the end we'd have to solve k = 0 n 1 ( w 2 r + 1 ) \displaystyle \prod_{k=0}^{n-1} (w^{2r} + 1) where w 2 n = 1 w^{2n} = 1 Any insights?

Ishan Singh - 5 years, 7 months ago

Log in to reply

@Ishan Singh Still the same method as is shown in my solution. ( ω 2 k + 1 ) = ( ω k + i ) ( ω k i ) = ( i ω k ) ( i ω k ) = ( ( i ) k 1 ) ( i k 1 ) = 1 ( i ) k i k + 1 = 2 2 ( 1 ) k cos ( k π / 2 ) (\omega^{2k}+1)=(\omega^k+i)(\omega^k-i)=(-i-\omega^k)(i-\omega^k)=((-i)^k-1)(i^k-1)=1-(-i)^k-i^k+1=2-2(-1)^k\cos(k\pi/2)

Kenny Lau - 5 years, 7 months ago

Log in to reply

@Kenny Lau How is ( i ω k ) ( i ω k ) = ( ( i ) k 1 ) ( i k 1 ) (-i-\omega^k)(i-\omega^k) = ((-i)^k - 1)(i^k - 1) ? Also note that r n r \neq n

Ishan Singh - 5 years, 7 months ago

Log in to reply

@Ishan Singh Oops, I meant that ( i ω k ) ( i ω k ) = ( ( i ) n 1 ) ( i n 1 ) (-i-\omega^k)(i-\omega^k)=((-i)^n-1)(i^n-1) . This is the first formula that I gave in my solution.

Kenny Lau - 5 years, 7 months ago

Log in to reply

@Kenny Lau I think you misread my question. The product is k = 0 n 1 ( exp ( i r k π n ) + 1 ) \displaystyle \prod_{k=0}^{n-1} \left(\exp\left(i\dfrac{rk\pi}{n}\right) +1 \right)

Ishan Singh - 5 years, 7 months ago

Log in to reply

@Ishan Singh 2 cos ( k π / n ) \prod2\cos(k\pi/n)

= ( exp ( k i π / n ) + exp ( k i π / n ) ) =\displaystyle\prod(\exp(ki\pi/n)+\exp(-ki\pi/n))

= exp ( k i π / n ) ( exp ( 2 k i π / n ) + 1 ) =\displaystyle\prod\exp(-ki\pi/n)(\exp(2ki\pi/n)+1)

= ( exp ( k i π / n ) ) ( 1 ) n ( ( 1 ) n 1 ) =\displaystyle\left(\prod\exp(-ki\pi/n)\right)(-1)^n((-1)^n-1)

= exp ( ( n + 1 ) i π / 2 ) ( 1 ) n ( ( 1 ) n 1 ) =\displaystyle\exp(-(n+1)i\pi/2)(-1)^n((-1)^n-1)

= ( i ) n + 1 ( 1 ( 1 ) n ) =\displaystyle(-i)^{n+1}(1-(-1)^n)

I am writing the general solution now. This is just an example of how I would do it.

Kenny Lau - 5 years, 7 months ago

Log in to reply

@Kenny Lau Yeah, that's my point, it doesn't seem to work in the general case. Anyway, eagerly waiting for your general solution.

Ishan Singh - 5 years, 7 months ago

Log in to reply

@Ishan Singh So:

( 2 cos ( r k π n ) ) \quad\displaystyle\prod\left(2\cos\left(\frac{rk\pi}n\right)\right)

= ( exp ( r k i π n ) + exp ( r k i π n ) ) =\displaystyle\prod\left(\exp\left(\frac{rki\pi}n\right)+\exp\left(\frac{-rki\pi}n\right)\right)

= exp ( r k i π n ) ( exp ( 2 r k i π n ) + 1 ) =\displaystyle\prod\exp\left(\frac{-rki\pi}n\right)\left(\exp\left(\frac{2rki\pi}n\right)+1\right)

= exp ( r ( n + 1 ) i π 2 ) ( exp ( 2 r k i π n ) + 1 ) =\displaystyle\exp\left(\frac{-r(n+1)i\pi}2\right)\prod\left(\exp\left(\frac{2rki\pi}n\right)+1\right)

= exp ( r ( n + 1 ) i π 2 ) m = 0 r ( exp ( 2 k i π n ) exp ( ( 2 m + 1 ) i π 2 ) ) =\displaystyle\exp\left(\frac{-r(n+1)i\pi}2\right)\prod\prod_{m=0}^r\left(\exp\left(\frac{2ki\pi}n\right)-\exp\left(\frac{(2m+1)i\pi}2\right)\right)

= exp ( r ( n + 1 ) i π 2 ) ( 1 ) n r m = 0 r 1 ( exp ( ( 2 m + 1 ) i π 2 ) exp ( 2 k i π n ) ) =\displaystyle\exp\left(\frac{-r(n+1)i\pi}2\right)(-1)^{nr}\prod\prod_{m=0}^{r-1}\left(\exp\left(\frac{(2m+1)i\pi}2\right)-\exp\left(\frac{2ki\pi}n\right)\right)

= exp ( r ( n + 1 ) i π 2 ) ( 1 ) n r m = 0 r 1 ( exp ( ( 2 m + 1 ) n i π 2 ) 1 ) =\displaystyle\exp\left(\frac{-r(n+1)i\pi}2\right)(-1)^{nr}\prod_{m=0}^{r-1}\left(\exp\left(\frac{(2m+1)ni\pi}2\right)-1\right)

Looks like I have disappointed you, haven't I. At least I have eliminated k k .

Kenny Lau - 5 years, 7 months ago

Log in to reply

@Kenny Lau Looks good. I'll inform if I get anything. Nice talking to you. Night.

Ishan Singh - 5 years, 7 months ago

@Kenny Lau Btw, there's a typo. It should be exp ( ( 2 m + 1 ) n i π r ) \displaystyle\exp\left(\frac{(2m+1)ni\pi}{r}\right) instead of exp ( ( 2 m + 1 ) n i π 2 ) \displaystyle\exp\left(\frac{(2m+1)ni\pi}{2}\right) in the last and second last line.

Ishan Singh - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...