Let's Play AM GM

Algebra Level 4

Positive numbers x , y x,y satisfy the equation 3 x + 4 y = 5 3x+4y=5

The maximum value of x 2 y 3 x^2 y^3 is equals to a b \frac a b for coprime positive integers a , b a,b

What is the value of a + b a+b ?


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Shrihari B
Dec 28, 2014

3x + 4y=5 So, 3x/2 + 3x/2 + 4y/3 + 4y/3 + 4y/3 = 5. Apply AM-GM inequality on the Left Hand Side,

LHS >= (3x/2 . 3x/2 . 4y/3 . 4y/3 .4y/3)=(16/3 .x^2.y^3)^{1/5}

So, 1>= 16/3 .x^2 .y^3 So, x^2.y^3 <= 3/16

So, a=3, b=16 So a+b =19.

Note that you needed the condition that x , y > 0 x, y > 0 otherwise you could not have done AM-GM.

I have edited the condition into the question.

Calvin Lin Staff - 6 years, 3 months ago

Log in to reply

x+2x+2y+y+y=5 therefore 1>=(4x^2 y^3)^0.20 by AM-GM therefore 1/4>=x^2 y^3 answer=5

Aakash Khandelwal - 6 years ago

Log in to reply

As mentioned, we need x , y x, y to be positive (or non-negative) in order to apply AM-GM.

Calvin Lin Staff - 6 years ago

Log in to reply

@Calvin Lin x and y are given as positive

Aakash Khandelwal - 6 years ago

same way!!

shuvam keshari - 5 years, 9 months ago
Jason Hughes
Mar 9, 2015

3 x + 4 y = 5 3x+4y=5 so x = 5 4 y 3 x=\frac{5-4y}{3} . Substitute in next line to get ( 5 4 y 3 ) 2 y 3 a b (\frac{5-4y}{3})^2y^3\leq \frac{a}{b} .

Maximize by taking first derivative and setting equal to zero.

3 y 2 ( 5 4 y 3 ) 2 + 2 y 3 ( 5 4 y 3 ) 4 3 = 0 3y^2(\frac{5-4y}{3})^2+ 2y^3(\frac{5-4y}{3})*\frac{-4}{3} =0

y 2 ( 5 4 y 3 ) ( 3 5 4 y 3 + 8 y 3 ) = 0 y^2(\frac{5-4y}{3})( 3*\frac{5-4y}{3} + \frac{-8y}{3})=0

y 2 ( 5 4 y 3 ) ( 15 20 y 3 ) = 0 y^2(\frac{5-4y}{3})( \frac{15-20y}{3})=0

y = 0 , 5 4 , y=0, \frac{5}{4}, or 3 4 \frac{3}{4} .

If y = 0 , y=0, and x = 5 3 x= \frac{5}{3} then x 2 y 3 = 0 x^2y^3=0

If y = 5 4 , y=\frac{5}{4}, and x = 0 x=0 then x 2 y 3 = 0 x^2y^3=0

If y = 3 4 , y=\frac{3}{4}, and x = 2 3 x=\frac{2}{3} then x 2 y 3 = ( 2 3 ) 2 ( 3 4 ) 3 = 3 16 x^2y^3=(\frac{2}{3})^2(\frac{3}{4})^3 = \frac{3}{16} .

a = 3 , b = 16 , a + b = 19 a=3,b=16, a+b=19

Note that you needed the condition that x , y > 0 x, y > 0 otherwise you could not have done AM-GM.

I have edited the condition into the question.

Calvin Lin Staff - 6 years, 3 months ago

hat's off to your patience and perseverance!!

even after seeing the name of the question!! good job:-)

shuvam keshari - 5 years, 9 months ago
Raushan Sharma
Apr 5, 2016

As x , y R + x,y \in \mathbb R^+ , by weighted A M G M AM-GM inequality, we have:

2 ( 3 x 2 ) + 3 ( 4 y 3 ) 2 + 3 ( 9 x 2 4 64 y 3 27 ) 1 5 \frac{2 \cdot (\frac{3x}{2}) + 3 \cdot (\frac{4y}{3})}{2+3} \geq (\frac{9x^2}{4} \cdot \frac{64y^3}{27})^\frac{1}{5}

( 1 ) 5 16 3 x 2 y 3 \Rightarrow (1)^5 \geq \frac{16}{3} x^2y^3

3 16 x 2 y 3 \Rightarrow \frac{3}{16} \geq x^2y^3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...