Let's telescope

Calculus Level 3

a = 3 a 3 + 8 a 3 8 = ? \large \prod_{a=3}^\infty \dfrac{a^3+8}{a^3-8} = \, ?


The answer is 3.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Mar 12, 2016

Using x 3 + y 3 = ( x + y ) ( x 2 x y + y 2 ) \small{\color{#3D99F6}{x^3+y^3=(x+y)(x^2-xy+y^2)}} P = a = 3 m ( a + 2 ) ( a 2 2 a + 4 ) ( a 2 ) ( a 2 + 2 a + 4 ) P= \displaystyle \prod_{a=3}^{m} \dfrac{(a+2)(a^2-2a+4)}{(a-2)(a^2+2a+4)} = ( a = 3 m a + 2 a 2 ) × ( a = 3 m a 2 2 a + 4 a 2 + 2 a + 4 ) =\left(\displaystyle \prod_{a=3}^{m} \dfrac{a+2}{a-2}\right)\times \left(\displaystyle \prod_{a=3}^{m} \dfrac{a^2-2a+4}{a^2+2a+4}\right) = ( 1 × 2 × 3 × 4 × . . . . m + 2 m 2 ) × ( 7 19 × 12 28 × 19 39 × . . . m 2 4 m + 2 m 2 + 4 m + 2 ) =(\dfrac{\not 5}{1}\times \dfrac{\not 6}{2}\times \dfrac{\not 7}{3}\times \dfrac{\not 8}{4}\times\dfrac{\not 9}{\not 5}....\dfrac{\cancel{m+2}}{m-2})\times (\dfrac{7}{\cancel{19}}\times \dfrac{12}{\cancel{28}}\times \dfrac{\cancel{19}}{\cancel{39}}\times...\dfrac{\cancel{m^2-4m+2}}{m^2+4m+2}) = 84 ( m 1 ) m ( m + 1 ) ( m + 2 ) 24 ( m 2 + 3 ) ( m 2 + 2 m + 4 ) =\dfrac{84(m-1)m(m+1)(m+2)}{24(m^2+3)(m^2+2m+4)} When m m , P approaches 84 24 \rightarrow \infty,\color{forestgreen}{P~\text{approaches}~\dfrac{84}{24}}

Hence, P = 3.5 \Large\color{#302B94}{P=3.5}

loved it @Rishabh Cool

Shivam K - 5 years, 3 months ago

Log in to reply

Thanks... ;-)

Rishabh Jain - 5 years, 3 months ago

Log in to reply

India 79 all out. Did you see?

Kushagra Sahni - 5 years, 3 months ago

Log in to reply

@Kushagra Sahni No... I didn't had the courage to watch team India collapse :-(.... I switched off the TV as soon as second wicket of Rohit Sharma went away..... And then India's defeat was predictable since India has a weakness of collapsing in pressure situations...

Rishabh Jain - 5 years, 3 months ago
Chew-Seong Cheong
Mar 12, 2016

Same method but my presentation is as follows:

P = a = 3 a 3 + 8 a 3 8 = a = 3 ( a + 2 ) ( a 2 2 a + 4 ) ( a 2 ) ( a 2 + 2 a + 4 ) = a = 3 a + 2 a 2 a = 3 a 2 2 a + 4 a 2 + 2 a + 4 = a = 3 a + 2 a 2 a = 3 ( a 1 ) 2 + 3 ( a + 1 ) 2 + 3 = ( 1 1 ˙ 2 ˙ 3 ˙ 4 a = 3 a + 2 a + 2 ) ( ( 2 2 + 3 ) ( 3 2 + 3 ) a = 3 ( a + 1 ) 2 + 3 ( a + 1 ) 2 + 3 ) = 84 24 = 7 2 = 3.5 \begin{aligned} P & = \prod_{a=3}^\infty \frac{a^3+8}{a^3-8} \\ & = \prod_{a=3}^\infty \frac{(a+2)(a^2-2a+4)}{(a-2)(a^2+2a+4)} \\ & = \prod_{a=3}^\infty \frac{a+2}{a-2} \prod_{a=3}^\infty \frac{a^2-2a+4}{a^2+2a+4} \\ & = \prod_{a=3}^\infty \frac{a+2}{a-2} \prod_{a=3}^\infty \frac{(a-1)^2+3}{(a+1)^2+3} \\ & = \left(\frac{1}{1\dot{}2\dot{}3\dot{}4} \prod_{a=3}^\infty \frac{a+2}{a+2}\right) \left((2^2+3)(3^2+3)\prod_{a=3}^\infty \frac{(a+1)^2+3}{(a+1)^2+3}\right) \\ & = \frac{84}{24} = \frac{7}{2} = \boxed{3.5} \end{aligned}

thats nice !!!!! @Chew-Seong Cheong

Shivam K - 5 years, 3 months ago

Can you explain the last step sir? @Chew-Seong Cheong

Anik Mandal - 5 years, 3 months ago

Log in to reply

Check out the following:

a = 3 a + 2 a 2 = 5 ˙ 6 ˙ 7 ˙ 8 ˙ 9 ˙ . . . 1 ˙ 2 ˙ 3 ˙ 4 ˙ 5 ˙ . . . = 1 1 ˙ 2 ˙ 3 ˙ 4 × 5 ˙ 6 ˙ 7 ˙ 8 ˙ 9 ˙ . . . 5 ˙ 6 ˙ 7 ˙ 8 ˙ 9 ˙ . . . = 1 1 ˙ 2 ˙ 3 ˙ 4 a = 3 a + 2 a + 2 \begin{aligned} \prod_{a=3}^\infty \frac{a+2}{a-2} & = \frac{5\dot{}6\dot{}7\dot{}8\dot{}9\dot{}...}{1\dot{}2\dot{}3 \dot{}4\dot{}5\dot{}...} \\ & = \frac{1}{1\dot{}2\dot{}3 \dot{}4} \times \frac{5\dot{}6\dot{}7\dot{}8\dot{}9\dot{}...}{5\dot{}6\dot{}7\dot{}8\dot{}9\dot{}...} \\ & = \frac{1}{1\dot{}2\dot{}3 \dot{}4} \prod_{a=3}^\infty \frac{a+2}{a+2} \end{aligned}

Chew-Seong Cheong - 5 years, 3 months ago

Log in to reply

Nicely done,Sir!

Anik Mandal - 5 years, 3 months ago
Shivam K
Mar 12, 2016

solution lies in the name it is a telescopic multiplicative series a^-8=(a-2)(a^2+2a+4) a^3+8=(a+2)(a^2-2a+4)

a = 3 a + 2 a 2 a = 3 a 2 2 a + 4 a 2 + 2 a + 4 \prod _{ a=3 }^{ \infty }{ \frac { a+2 }{ a-2 } } \prod _{ a=3 }^{ \infty }{ \frac { { a }^{ 2 }-2a+4 }{ { a }^{ 2 }+2a+4 } }

= 1/24 * 7 * 12 =3.5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...