Power 3

Algebra Level 3

n = 1 n 3 3 n = X \sum_{n=1}^ \infty \frac{ { n }^{ 3 }}{ 3^n } = X

X X can be expressed in the form a b \dfrac{a}{b} , where a a and b b are coprime positive integers. Find a + b a + b .

Too easy? Go to the next level


The answer is 41.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

X = n = 1 n 3 3 n = n = 0 n 3 3 n = n = 0 ( n + 1 ) 3 3 n + 1 = n = 0 n 3 + 3 n 2 + 3 n + 1 3 n + 1 = n = 0 n 3 3 n + 1 + 3 n = 0 n 2 3 n + 1 + 3 n = 0 n 3 n + 1 + n = 0 1 3 n + 1 = 1 3 n = 0 n 3 3 n + 3 3 n = 0 n 2 3 n + 3 3 n = 0 n 3 n + 1 3 n = 0 1 3 n = X 3 + 3 2 + 3 4 + 1 3 ( 1 1 1 3 ) See Note. 2 3 X = 11 4 X = 33 8 \begin{aligned} X & =\sum_{\color{#3D99F6}n=1}^\infty \frac {n^3}{3 ^n} =\sum_{\color{#D61F06}n=0} ^\infty \frac {n^3}{3 ^n} \\ & =\sum_{\color{#D61F06}n=0} ^\infty \frac {({\color{#D61F06}n+1})^3}{3 ^{\color{#D61F06}n+1}} \\ & =\sum_{\color{#D61F06}n=0} ^\infty \frac {n^3+3n^2+3n+1}{3 ^{n+1}} \\ & = \sum_{\color{#D61F06}n=0} ^\infty \frac {n^3}{3^{n+1}} + 3 \sum_{\color{#D61F06}n=0} ^\infty \frac {n^2}{3 ^{n+1}} + 3 \sum_{\color{#D61F06}n=0}^\infty \frac n{3 ^{n+1}} + \sum_{\color{#D61F06}n=0}^\infty \frac 1{3 ^{n+1}} \\ & = \frac 13 \sum_{\color{#D61F06}n=0}^\infty \frac {n^3}{3^n} + \frac 33 \sum_{\color{#D61F06}n=0}^\infty \frac {n^2}{3 ^n} + \frac 33 \sum_{\color{#D61F06}n=0}^\infty \frac n{3 ^n} + \frac 13 \sum_{\color{#D61F06}n=0}^\infty \frac 1{3 ^n} \\ & = \frac X3 + {\color{#3D99F6}\frac 32} + {\color{#3D99F6}\frac 34} + \frac 13 \left(\frac 1 {1 - \frac 1 3} \right) & \small {\color{#3D99F6} \text{See Note.}} \\ \frac 23 X & = \frac {11}4 \\ X & = \frac {33}8 \end{aligned}

a + b = 33 + 8 = 41 \implies a+b =33+8=\boxed{41}


Note: Using similar technique:

X 1 = n = 0 n 3 n = n = 1 n 3 n = n = 0 n + 1 3 n + 1 = n = 0 n 3 n + 1 + n = 0 1 3 n + 1 = 1 3 n = 0 n 3 n + 1 3 n = 0 1 3 n = X 1 3 + 1 3 ( 1 1 1 3 ) 2 3 X 1 = 1 2 X 1 = 3 4 \begin{aligned} X_1 & = \sum_{\color{#D61F06}n=0} ^\infty \frac n{3 ^n} \\ & = \sum_{\color{#3D99F6}n=1}^\infty \frac n{3 ^n} \\ & =\sum_{\color{#D61F06}n=0}^\infty \frac {\color{#D61F06}n+1}{3 ^{\color{#D61F06}n+1}} \\ & = \sum_{\color{#D61F06}n=0}^\infty \frac n{3 ^{n+1}} + \sum_{\color{#D61F06}n=0}^\infty \frac 1{3 ^{n+1}} \\ & = \frac 13 \sum_{\color{#D61F06}n=0}^\infty \frac n{3 ^n} + \frac 13 \sum_{\color{#D61F06}n=0}^\infty \frac 1{3 ^n} \\ & = \frac {X_1}3 + \frac 13\left(\frac 1 {1 - \frac 1 3} \right) \\ \frac 23 X_1 & = \frac 12 \\ \implies X_1 & = \frac 34 \end{aligned}

X 2 = n = 0 n 2 3 n = n = 1 n 2 3 n = n = 0 ( n + 1 ) 2 3 n + 1 = n = 0 n 2 + 2 n + 1 3 n + 1 = n = 0 n 2 3 n + 1 + 2 n = 0 n 3 n + 1 + n = 0 1 3 n + 1 = 1 3 n = 0 n 2 3 n + 2 3 n = 0 n 3 n + 1 3 n = 0 1 3 n = X 2 3 + 2 3 3 4 + 1 3 ( 1 1 1 3 ) X 1 = 3 4 2 3 X 2 = 1 X 2 = 3 2 \begin{aligned} X_2 & =\sum_{\color{#D61F06}n=0} ^\infty \frac {n^2}{3 ^n} \\ & =\sum_{\color{#3D99F6}n=1}^\infty \frac {n^2}{3 ^n} \\ & =\sum_{\color{#D61F06}n=0} ^\infty \frac {({\color{#D61F06}n+1})^2}{3 ^{\color{#D61F06}n+1}} \\ & =\sum_{\color{#D61F06}n=0} ^\infty \frac {n^2+2n+1}{3 ^{n+1}} \\ & = \sum_{\color{#D61F06}n=0} ^\infty \frac {n^2}{3 ^{n+1}} + 2 \sum_{\color{#D61F06}n=0}^\infty \frac n{3 ^{n+1}} + \sum_{\color{#D61F06}n=0}^\infty \frac 1{3 ^{n+1}} \\ & = \frac 13 \sum_{\color{#D61F06}n=0}^\infty \frac {n^2}{3 ^n} + \frac 23 \sum_{\color{#D61F06}n=0}^\infty \frac n{3 ^n} + \frac 13 \sum_{\color{#D61F06}n=0}^\infty \frac 1{3 ^n} \\ & = \frac {X_2}3 + \frac 23 \cdot {\color{#3D99F6}\frac 34} + \frac 13 \left(\frac 1 {1 - \frac 1 3} \right) & \small {\color{#3D99F6} X_1 = \frac 34} \\ \frac 23 X_2 & = 1 \\ X_2 & = \frac 32 \end{aligned}

Woah ... So big...

Md Zuhair - 4 years, 7 months ago

Log in to reply

Where is level 5 ?

Sabhrant Sachan - 4 years, 7 months ago

Log in to reply

https://brilliant.org/problems/level-5-2/

saharsh rathi - 4 years, 7 months ago

Log in to reply

@Saharsh Rathi Check out another method in Level 5.

Chew-Seong Cheong - 4 years, 7 months ago

@Chew-Seong Cheong BEST SOLUTION . This method makes this question very easy. Thanks for letting us know such a great method to solve this. I also was able to solve power 4 , which i couldn't solve with my way because it was getting too complicated. :)

saharsh rathi - 4 years, 7 months ago
  • syms n

  • symsum(n^3/(3^n), n, 0, Inf)

  • ans =

  • 33/8

Using Matlab :P

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...