L'Hopital and Mc'laurin is useless

Calculus Level 4

lim x 0 ( 1 + x ) 1 x x x \Large \lim_{x\rightarrow 0} \left( 1+x \right)^{\frac{1}{x^{x^{x}}}}

Find the closed form of the limit above to 3 decimal places.


The answer is 2.718.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 15, 2017

L = lim x 0 ( 1 + x ) 1 x x x A 1 case, see note. = exp ( lim x 0 1 x x x ( 1 + x 1 1 ) ) = exp ( lim x 0 x x x x ) = exp ( lim x 0 1 x x x 1 ) lim x 0 x x 1 = 0 = exp ( 1 1 ) = e 2.718 \begin{aligned} L & = \lim_{x \to 0}(1+x)^{\frac 1{x^{x^x}}} & \small \color{#3D99F6} \text{A }1^\infty \text{ case, see note.} \\ & = \exp \left(\lim_{x \to 0} \frac 1{x^{x^x}} \left(\frac {1+x}1-1 \right) \right) \\ & = \exp \left(\lim_{x \to 0} \frac x{x^{x^x}} \right) \\ & = \exp \left(\lim_{x \to 0} \frac 1{x^{\color{#3D99F6}x^x-1}} \right) & \small \color{#3D99F6} \lim_{x \to 0} x^x - 1 = 0 \\ & = \exp \left(\frac 11 \right) = e \approx \boxed{2.718} \end{aligned}


Note: For a 1 1^\infty case (method 2) : lim x a ( f ( x ) g ( x ) ) h ( x ) = exp ( lim x a h ( x ) ( f ( x ) g ( x ) 1 ) ) \small \displaystyle \lim_{x \to a} \left(\frac {f(x)}{g(x)} \right)^{h(x)} = \exp \left(\lim_{x \to a} h(x)\left(\frac {f(x)}{g(x)}-1\right) \right)

first , we need to prove that if lim x 0 e f ( x ) \displaystyle \lim_{x\rightarrow 0} e^{f(x)} exists then lim x 0 e f ( x ) = e x p [ lim x 0 f ( x ) ] \displaystyle \lim_{x\rightarrow 0} e^{f(x)} = exp\left[\displaystyle \lim_{x\rightarrow 0} f\left( x \right) \right]

second , i dont know why this true lim x 0 x x x 1 = x ( lim x 0 x x 1 ) ? \displaystyle \lim_{x\rightarrow 0} x^{x^{x}-1} = x^{\left(\displaystyle \lim_{x\rightarrow 0} x^{x}-1\right) } ? i mean what theorem,lemma or definition use to get it...thanks before.

uzumaki nagato tenshou uzumaki - 4 years, 2 months ago

Log in to reply

First, I was using the second method of link : lim x a ( f ( x ) g ( x ) ) h ( x ) = exp ( lim x a h ( x ) ( f ( x ) g ( x ) 1 ) ) \small \displaystyle \lim_{x \to a} \left(\frac {f(x)}{g(x)} \right)^{h(x)} = \exp \left(\lim_{x \to a} h(x)\left(\frac {f(x)}{g(x)}-1\right) \right) for solving 1 1^\infty . I can't find the proof.

Second, I was assuming lim x 0 x x x 1 = lim x 0 x x = 1 \displaystyle \lim_{x \to 0} x^{x^x-1} = \lim_{x \to 0} x^x = 1 . Again no reference.

Chew-Seong Cheong - 4 years, 2 months ago

Used second formula to get to answer

subh mandal - 4 years, 2 months ago

When you substitute ( I suppose) lim x 0 [ x x 1 ] \lim_{x\to 0} [x^x -1] then simultaneously it converts to a 0 0 0^0 not x 0 x^0 , thus describing it zero seems inappropriate. Correct me if I took it wrong..

Vishal Yadav - 4 years, 2 months ago

Log in to reply

If we consider lim x 0 x x = lim x 0 exp ( x ln x ) \displaystyle \lim_{x \to 0} x^x = \lim_{x \to 0} \exp (x\ln x) . By L'Hôpital's Rule lim x 0 x ln x = 0 \displaystyle \lim_{x \to 0} x\ln x = 0 , therefore, lim x 0 x x = e 0 = 1 \displaystyle \lim_{x \to 0} x^x = e^0 = 1

Chew-Seong Cheong - 4 years, 2 months ago
Viki Zeta
Mar 14, 2017

lim x 0 ( 1 + x ) 1 x x x = lim x ( 1 + 1 x ) 1 x 1 x 1 x = lim x ( 1 + 1 x ) x = e 2.71828 \displaystyle \lim_{x\rightarrow 0} (1+x)^{\dfrac{1}{x^{x^{x}}}} \\ = \lim_{x\rightarrow \infty} (1+\dfrac{1}{x})^{\dfrac{1}{x}^{\dfrac{1}{x}^{\dfrac{1}{x}}}} \\ = \lim_{x\rightarrow \infty} (1 + \dfrac{1}{x})^{x} \\ = \mathrm{e} \\ \boxed{\approx 2.71828}

are you sure that is a rigorous argument?

Rohith M.Athreya - 4 years, 2 months ago

Log in to reply

This solution is wrong. All of the steps are unjustified.

Pi Han Goh - 4 years, 2 months ago

Log in to reply

Yep I thought so

Rohith M.Athreya - 4 years, 2 months ago

lim x 0 ( 1 + x ) 1 x x x = lim x ( 1 + 1 x ) 1 1 x 1 x 1 x \displaystyle \lim_{x\rightarrow 0} \left( 1+x \right)^{\dfrac{1}{x^{x^{x}}}} = \lim_{x\rightarrow \infty} \left( 1+\dfrac{1}{x} \right)^{\dfrac{1}{\dfrac{1}{x}^{\dfrac{1}{x}^{\dfrac{1}{x}}}}} or equals lim x ( 1 + 1 x ) x x x \displaystyle \lim_{x\rightarrow \infty} (1+\dfrac{1}{x})^{x^{x^{x}}} ?

uzumaki nagato tenshou uzumaki - 4 years, 2 months ago

Log in to reply

EDITED. Thanks!

Viki Zeta - 4 years, 2 months ago

Log in to reply

thats different too .

uzumaki nagato tenshou uzumaki - 4 years, 2 months ago

Log in to reply

@Uzumaki Nagato Tenshou Uzumaki wolfram alpha check. Did that solve your query?

Viki Zeta - 4 years, 2 months ago

Nice way of solving it.

Hana Wehbi - 4 years, 2 months ago

I do not think that x^x^x is defined for x < 0 . So the limit should be for x tending to 0+. And as per the solution, I used @Chew-Seong Cheong method.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...