Product of global and local maxima

Calculus Level 5

f ( x ) = { lim n ( n n ( x + n ) ( x + n 2 ) ( x + n n ) n ! ( x 2 + n 2 ) ( x 2 + n 2 4 ) ( x 2 + n 2 n 2 ) ) x n if x > 1 a ( x + 2 ) : a is a constant if x 1 f(x) = \begin{cases} \lim\limits_{n \to \infty} \left(\dfrac {n^n(x+n)\left(x + \frac n2\right) \cdots \left(x + \frac nn\right)} {n!\left(x^2+n^2\right) \left(x^2 + \frac {n^2}4 \right) \cdots \left(x^2 + \frac {n^2}{n^2} \right)} \right)^\frac xn & \text{if }x > -1 \\ a(x+2): a \text{ is a constant} & \text{if }x \leq -1 \end{cases}

If f ( x ) f(x) above is a continuous function for all x R x \in \mathbb{R} and M G = max ( f ( x ) ) M_G = \max(f(x)) and M L = max x > 0 ( f ( x ) ) M_L = \max\limits_{x >0} (f(x)) , find M G M L M_GM_L .

16 8 4 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sid Patak
Oct 26, 2020

Let L = L ( x ) = lim n ( n n ( x + n ) ( x + n 2 ) ( x + n 3 ) . . . ( x + n n ) n ! ( x 2 + n 2 ) ( x 2 + n 2 4 ) ( x 2 + n 2 9 ) . . . ( x 2 + n 2 n 2 ) ) x n L= L(x) = \lim\limits_{n\to\infty} \left( \dfrac{n^n(x+n)\left( x+\dfrac{n}{2}\right)\left( x+\dfrac{n}{3}\right)... \left( x+\dfrac{n}{n}\right)}{n!(x^2+n^2)\left( x^2+\dfrac{n^2}{4}\right)\left( x^2+\dfrac{n^2}{9}\right)...\left( x^2+\dfrac{n^2}{n^2}\right)}\right)^{\dfrac{x}{n}} \newline

We know for sure L ( x ) > 0 L(x) > 0 because it is in the form of an exponent and exponents are always positive .

L = lim n r = 1 n ( n r x + n r x 2 + n 2 r 2 ) x n L = \lim\limits_{n\to\infty} \prod\limits_{r=1}^n \left( \dfrac{n}{r} \dfrac{x+\frac{n}{r}}{x^2+\frac{n^2}{r^2}} \right)^{\frac{x}{n}} \newline

Justification of the line above is given in the end (conversion to product form).

ln ( L ) = lim n x n l n ( r = 1 n n r x + n r x 2 + n 2 r 2 ) \ln(L) = \lim\limits_{n\to\infty} \dfrac{x}{n}ln\left( \prod\limits_{r=1}^n \dfrac{n}{r} \dfrac{x+\frac{n}{r}}{x^2+\frac{n^2}{r^2}} \right)

ln ( L ) = lim n x n r = 1 n l n ( n r x + n r x 2 + n 2 r 2 ) \ln(L) = \lim\limits_{n\to\infty} \dfrac{x}{n} \sum\limits_{r=1}^n ln\left( \dfrac{n}{r} \dfrac{x+\frac{n}{r}}{x^2+\frac{n^2}{r^2}} \right)

ln ( L ) = lim n x n r = 1 n l n ( 1 r / n x + 1 r / n x 2 + 1 ( r / n ) 2 ) \ln(L) = \lim\limits_{n\to\infty} \dfrac{x}{n} \sum\limits_{r=1}^n ln\left( \dfrac{1}{r/n} \dfrac{x+\frac{1}{r/n}}{x^2+\frac{1}{(r/n)^2}} \right)

Converting a Riemann Sum to a Definite Integral

ln ( L ) = 0 1 x l n ( 1 p x + 1 p x 2 + 1 p 2 ) d p \ln(L) = \int_{0}^{1} x ln\left( \dfrac{1}{p} \dfrac{x+\frac{1}{p}}{x^2+\frac{1}{p^2}} \right)dp

ln ( L ) = 0 1 x l n ( 1 p x p + 1 p p 2 x 2 p 2 + 1 ) d p = 0 1 x l n ( 1 + x p 1 + x 2 p 2 ) d p \ln(L) = \int_{0}^{1} x ln\left( \dfrac{1}{\cancel{p}} \dfrac{xp+1}{\cancel{p}}\dfrac{\cancel{p^2}}{x^2p^2+1} \right)dp = \int_{0}^{1} x ln\left( \dfrac{1+xp}{1+x^2p^2} \right)dp

Let x p = t ; x d p = d t xp = t; xdp = dt

ln ( L ) = x 0 x l n ( 1 + t 1 + t 2 ) d t x \ln(L) = \cancel{x} \int_{0}^{x} ln\left( \dfrac{1+t}{1+t^2} \right)\dfrac{dt}{\cancel{x}}

ln ( L ) = 0 x l n ( 1 + t 1 + t 2 ) d t \color{#D61F06} \implies \ln(L) = \int_{0}^{x} ln\left( \dfrac{1+t}{1+t^2} \right)dt

Differentiate both sides:

L ( x ) L ( x ) = l n ( 1 + x 1 + x 2 ) \dfrac{L'(x)}{L(x)} = ln\left( \dfrac{1+x}{1+x^2} \right)

Since L(x)>0 (proved in the start), the sign of L'(x) depends solely the RHS of the above expression. The sign of L'(x) will give us information about the function L(x) (regions where it is increasing and decreasing).

ln ( 1 + x 1 + x 2 ) < 0 0 < 1 + x 1 + x 2 < 1 1 < x < 0 , x > 1 ln ( 1 + x 1 + x 2 ) 0 1 + x 1 + x 2 1 0 x 1 \ln(\dfrac{1+x}{1+x^2})<0 \implies 0<\dfrac{1+x}{1+x^2}<1 \implies -1<x<0, x>1 \newline \ln(\dfrac{1+x}{1+x^2})\geq 0 \implies \dfrac{1+x}{1+x^2}\geq1 \implies 0\leq x \leq 1

Now we know the behavior of L(x). L(x) is defined only for x>-1 as the argument of a logarithm must be greater than 0. Also L(x) decreases from (-1,0], then increases from (0,1] and then decreases from (1, \infty ). Hence candidates for the maximum values of L(x) are: L ( 1 ) and lim x 1 L ( x ) L(1) \text{and }\lim\limits_{x\to-1} L(x) .

Hence M L = f ( 1 ) M_L = f(1) and M G = max ( f ( 1 ) , f ( 1 ) ) M_G= \max (f(1), f(-1)) .

Now we will find L(x) using the equation from before (by solving the definite integral on the RHS):

ln ( L ) = 0 x l n ( 1 + t 1 + t 2 ) d t = ln ( x + 1 ) + x l n ( 1 + x 1 + x 2 ) 2 a r c t a n ( x ) + x \color{#D61F06} \ln(L) = \int_{0}^{x} ln\left( \dfrac{1+t}{1+t^2} \right)dt = \ln(x+1) +xln\left( \dfrac{1+x}{1+x^2} \right) -2arctan(x) + x

L ( x ) = e ln ( x + 1 ) + x l n ( 1 + x 1 + x 2 ) 2 a r c t a n ( x ) + x = ( x + 1 ) x + 1 ( x 2 + 1 ) x e 2 a r c t a n ( x ) + x L(x) = e^{ \ln(x+1) +xln\left( \dfrac{1+x}{1+x^2} \right) -2arctan(x) + x} = \dfrac{(x+1)^{x+1}} {(x^2+1)^x} e^{-2arctan(x)+x}

Given the fact that f(x) is continuous and the findings from before:

f ( x ) = { ( x + 1 ) x + 1 ( x 2 + 1 ) x e 2 a r c t a n ( x ) + x if x > 1 a ( x + 2 ) : a ( 1 + 2 ) = lim x 1 ( x + 1 ) x + 1 ( x 2 + 1 ) x e 2 a r c t a n ( x ) + x if x 1 f(x) = \begin{cases} \dfrac{(x+1)^{x+1}} {(x^2+1)^x} e^{-2arctan(x)+x} & \text{if }x>-1 \\ a(x+2): a(-1+2) = \lim\limits_{x\to-1} \dfrac{(x+1)^{x+1}} {(x^2+1)^x} e^{-2arctan(x)+x}& \text{if }x\leq-1 \end{cases}

We know f ( 1 ) = M L = ( 1 + 1 ) 1 + 1 ( 1 2 + 1 ) 1 e 2 a r c t a n ( 1 ) + 1 = 2 e 1 π 2 f(1)= M_L = \dfrac{(1+1)^{1+1}} {(1^2+1)^1} e^{-2arctan(1)+1} = 2e^{1-\frac{\pi}{2}} and M G = max ( lim x 1 ( x + 1 ) x + 1 ( x 2 + 1 ) x e 2 a r c t a n ( x ) + x , f ( 1 ) ) M_G = \max\left( \lim\limits_{x\to-1} \dfrac{(x+1)^{x+1}} {(x^2+1)^x} e^{-2arctan(x)+x}, f(1) \right) . Now let us find this limit to see who wins... f(1) or f(-1):

lim x 1 ( x + 1 ) x + 1 ( x 2 + 1 ) x e 2 a r c t a n ( x ) + x = lim x 1 ( x + 1 ) x + 1 ( 1 2 + 1 ) 1 e 2 a r c t a n ( 1 ) 1 = 2 e π 2 1 lim x 1 ( x + 1 ) x + 1 = 2 e π 2 1 \lim\limits_{x\to-1} \dfrac{(x+1)^{x+1}} {(x^2+1)^x} e^{-2arctan(x)+x} = \lim\limits_{x\to-1} \dfrac{(x+1)^{x+1}} {(1^2+1)^{-1}} e^{-2arctan(-1)-1} = 2e^{\frac{\pi}{2} -1}\lim\limits_{x\to-1} (x+1)^{x+1} = 2e^{\frac{\pi}{2} -1} .

f ( 1 ) > f ( 1 ) M G = f ( 1 ) = 2 e π 2 1 f(-1) > f(1) \implies M_G = f(-1) = 2e^{\frac{\pi}{2} -1}

M G M L = 4 \therefore M_GM_L = 4

f ( x ) = { ( x + 1 ) x + 1 ( x 2 + 1 ) x e 2 a r c t a n ( x ) + x if x > 1 2 e π 2 1 ( x + 2 ) if x 1 f(x) = \begin{cases} \dfrac{(x+1)^{x+1}} {(x^2+1)^x} e^{-2arctan(x)+x} & \text{if }x>-1 \\ 2e^{\frac{\pi}{2} -1}(x+2) & \text{if }x\leq-1 \end{cases}


1. Justification of Line 2 (conversion to product) \text{1. Justification of Line 2 (conversion to product)} n n n ! = r = 1 n r n ( x + n ) ( x + n 2 ) ( x + n 3 ) . . . ( x + n n ) = r = 1 n ( x + n r ) ( x 2 + n 2 ) ( x 2 + n 2 4 ) ( x 2 + n 2 9 ) . . . ( x 2 + n 2 n 2 ) = r = 1 n ( x + ( n r ) 2 ) \newline \frac{n^n}{n!} = \prod\limits_{r=1}^n \frac{r}{n} \newline (x+n)\left( x+\dfrac{n}{2}\right)\left( x+\dfrac{n}{3}\right)... \left( x+\dfrac{n}{n}\right) = \prod\limits_{r=1}^n \left(x+\dfrac{n}{r}\right) \newline (x^2+n^2)\left( x^2+\dfrac{n^2}{4}\right)\left( x^2+\dfrac{n^2}{9}\right)...\left( x^2+\dfrac{n^2}{n^2}\right) = \prod\limits_{r=1}^n \left(x+\left(\dfrac{n}{r}\right)^2\right) \newline

2. log ( x = 1 n x ) = x = 1 n log ( x ) \text{2. }\log(\prod\limits_{x=1}^n x) = \sum\limits_{x=1}^n \log(x)

3. \text{3. } Converting a Riemann Sum to a Definite Integral

Great problem, and an amazing solution! Just one question: is there any simplification to be found by looking at f ( x ) f ( x ) f(x)f(-x)

earlier on? This seems to simplify things for 1 x 1 -1\le x \le 1 ; even in the original product form, the terms cancel quite neatly.

It probably depends on how the problem was originally stated - if it's to find the full function, or to find the values of M 1 M_1 and M 2 M_2 separately, this isn't very helpful. But if the question is specifically to find the product, and it's possible to show the maxima correspond to x = ± 1 x=\pm1 , then perhaps it does help.

Chris Lewis - 7 months, 2 weeks ago

Log in to reply

You are saying after we find out the maxima is at f(1) and lim x-> - 1 f(x) we find f(x)*f(-x)? As in, there's no need to solve the definite integral after that step?

Sid Patak - 7 months, 2 weeks ago

Log in to reply

I think so; my main point is that if you let f n ( x ) = r = 1 n ( n ( x + n r ) r ( x 2 + n 2 r 2 ) ) x n f_n(x)=\prod_{r=1}^n \left(\frac{n \left(x+\frac{n}{r}\right)}{r \left(x^2+\frac{n^2}{r^2}\right)}\right)^{\frac{x}{n}}

then f n ( x ) = r = 1 n ( n ( x + n r ) r ( x 2 + n 2 r 2 ) ) x n f_n(-x)=\prod_{r=1}^n \left(\frac{n \left(-x+\frac{n}{r}\right)}{r \left(x^2+\frac{n^2}{r^2}\right)}\right)^{\frac{-x}{n}}

and so

f n ( x ) f n ( x ) = r = 1 n ( x + n r x + n r ) x n = r = 1 n ( n + r x n r x ) x n \begin{aligned} f_n(x) f_n (-x) &=\prod_{r=1}^n \left(\frac{x+\frac{n}{r}}{-x+\frac{n}{r}} \right)^{\frac{x}{n}} \\ &=\prod_{r=1}^n \left(\frac{n+rx}{n-rx} \right)^{\frac{x}{n}} \end{aligned}

I'm not quite sure if that helps but it looks a bit simpler. Of course, there is still the issue of taking care with the limit as x 1 x \to 1 .

Anyway, as I said, this would only really help if you weren't interested in completely describing the function. What was the source of the problem, out of interest?

Chris Lewis - 7 months, 2 weeks ago

Log in to reply

@Chris Lewis But I think this trick is more tedious... because you will get another Reimann sum (for f(x)*f(-x)) and you need to convert that into a definite integral... and solve that. So you need to do the process all over again. Instead, you can use the definite integral we have already found to find the maxima and minima of f(x). But if you have an easier way... feel free to comment your solution...

by the way... the source is JEE... an entrance exam taken by students in India to enter top engineering colleges... A good score in this test is the sole qualification required for admission.

Sid Patak - 7 months, 2 weeks ago

but if you work back words do u get 4 still?

Shylaya Raymond - 6 months, 4 weeks ago

Log in to reply

what do u mean 'work back words'?

Sid Patak - 6 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...