Limit

Calculus Level 2

lim n 1 2 + 2 2 + 3 2 + + n 2 n 3 = ? \large\displaystyle\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \cdots+ n^2}{n^3} = \, ?

Give your answer to 3 decimal places.


The answer is 0.333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Naren Bhandari
Oct 20, 2017

L = lim n 1 2 + 2 2 + 3 2 + + n 2 n 3 = lim n k = 1 n k 2 n 3 = lim n 1 n k = 1 n k 2 n 2 = 0 1 x 2 d x c c c c c c c By Riemann Sums = 1 3 = 0.333 \begin{aligned} L & = \lim_{n\to\infty}\frac{1^2+2^2+3^2+\cdots +n^2}{n^3} \\ & = \lim_{n\to\infty}\displaystyle\sum_{k=1}^{n}\frac{k^2}{n^3} \\& = \lim_{n\to\infty}\frac{1}{n}\displaystyle\sum_{k=1}^{n}\frac{k^2}{n^2} \\& = \displaystyle\int_{0}^{1} x^2\,dx \phantom{ccccccc} {\color{#3D99F6}\text{By Riemann Sums}}\\& = \frac{1}{3} \\& =\boxed{0.333}\end{aligned}

Md Zuhair
Mar 27, 2017

S O L U T I O N SOLUTION

lim n > 1 2 + 2 2 + 3 2 + + n 2 n 3 \large\displaystyle\lim_{n->\infty} \frac{1^2 + 2^2 + 3^2 + \cdots+ n^2}{n^3}

\implies lim n > n ( n + 1 ) ( 2 n + 1 ) 6 n 3 \displaystyle\lim_{n->\infty} \frac{n(n+1)(2n+1)}{6n^3}

\implies lim n > n 3 ( 1 + 1 n ) ( 2 + 1 n ) 6 n 3 \displaystyle\lim_{n->\infty} \frac{n^3(1+\frac{1}{n})(2+\frac{1}{n})}{6n^3}

\implies lim n > ( 1 + 1 n ) ( 2 + 1 n ) 6 \displaystyle\lim_{n->\infty} \frac{(1+\frac{1}{n})(2+\frac{1}{n})}{6}

\implies ( 1 ) × ( 2 ) 6 \displaystyle \frac{(1) \times (2)}{6}

\implies 2 6 \displaystyle \frac{2}{6}

\implies 1 3 = 0.333 \displaystyle \frac{1}{3} = \boxed{0.333}

Just key in "\ to" or "\ rightarrow" for \to or \rightarrow

Chew-Seong Cheong - 4 years, 2 months ago

Log in to reply

Thanks sir, But can you help me to show the division by slash?

Md Zuhair - 4 years, 2 months ago

Log in to reply

Can you install Daum Equation Editor and use it?

"\ div" ÷ \div .

Chew-Seong Cheong - 4 years, 2 months ago

Log in to reply

@Chew-Seong Cheong No sir not like this... say n 3 n 2 \dfrac{n^3}{n^2} can be divided and answer will be n. Now what happened is n^3 was cutted by n^2.. this cutting is what I want to show sir

Md Zuhair - 4 years, 2 months ago

Log in to reply

@Md Zuhair n 3 1 n 2 \dfrac {n^{\cancel{3}1}}{\cancel {n^2}} . Just toggle LaTex or put your mouse cursor to see codes.

Chew-Seong Cheong - 4 years, 2 months ago

Log in to reply

@Chew-Seong Cheong Very very thank you sir

Md Zuhair - 4 years, 2 months ago

Log in to reply

@Md Zuhair I have changed it. The later one is better.

Chew-Seong Cheong - 4 years, 2 months ago
Chew-Seong Cheong
Apr 12, 2018

Similar solution with @Naren Bhandari's

L = lim n 1 2 + 2 2 + 3 2 + + n 2 n 3 = lim n 1 n k = 1 n ( k n ) 2 Using Riemann sums: = 0 1 x 2 d x = x 3 3 0 1 = 1 3 0.333 \begin{aligned} L & = \lim_{n \to \infty} \frac {1^2+2^2+3^2+\cdots + n^2}{n^3} \\ & = \lim_{n \to \infty} \frac 1n \sum_{k=1}^n \left(\frac kn\right)^2 & \small \color{#3D99F6} \text{Using Riemann sums: } \\ & = \int_0^1 x^2 \ dx \\ & = \frac {x^3}3 \ \bigg|_0^1 = \frac 13 \approx \boxed{0.333} \end{aligned}

Nice solution but there is a problem in your note about Riemann sums:

- k = a b \displaystyle\sum_{k=a}^{b} : a a and b b aren't necessarily integers, the sum goes for example from 0 0 to n n .

-in the sum it is f ( a + k b a n ) f(a+k\frac{b-a}{n})

-it is a b f ( x ) d x \displaystyle\int_{a}^{b}f(x)dx without limit and bounds depending of n n .

-finally, it not 1 n \frac{1}{n} in front of the sum but b a n \frac{b-a}{n} .

I know it is an inattention...

Théo Leblanc - 2 years, 2 months ago

Log in to reply

Thanks. I have removed the note.

Chew-Seong Cheong - 2 years, 2 months ago
William Crabbe
Apr 19, 2018

= lim n k = 1 n k 2 n 3 \large\displaystyle=\lim_{n \to \infty} \frac{\sum_{k=1}^{n}k^2}{n^3} = lim n n 3 3 + n 2 2 + n 6 n 3 \large\displaystyle=\lim_{n \to \infty} \frac{\frac{n^3}{3}+\frac{n^2}{2}+\frac{n}{6}}{n^3} = lim n n 2 3 + n 2 + 1 6 n 2 \large\displaystyle=\lim_{n \to \infty} \frac{\frac{n^2}{3}+\frac{n}{2}+\frac{1}{6}}{n^2} = lim n ( 1 3 + 1 2 n + 1 6 n 2 ) \large\displaystyle=\lim_{n \to \infty}\left(\frac{1}{3}+\frac{1}{2n}+\frac{1}{6n^2}\right) = 1 3 + lim n ( 1 2 n + 1 6 n 2 ) \large\displaystyle=\frac{1}{3}+\lim_{n \to \infty}\left(\frac{1}{2n}+\frac{1}{6n^2}\right) Because lim n 2 n = \large\displaystyle\lim_{n \to \infty}2n=\infty and lim n 6 n 2 = \large\displaystyle\lim_{n \to \infty}6n^2=\infty , the new limit becomes lim n ( 1 2 n + 1 6 n 2 ) = lim n ( 1 + 1 ) = 0 \large\displaystyle\lim_{n \to \infty}\left(\frac{1}{2n}+\frac{1}{6n^2}\right)=\lim_{n \to \infty}\left(\frac{1}{\infty}+\frac{1}{\infty}\right)=0 . With this, we arrive at our solution: = 1 3 = 0.333 \large\displaystyle=\frac{1}{3}=0.333\dots

Brian Lie
Apr 12, 2018

Relevant wiki: Stolz–Cesàro theorem

L = lim n 1 2 + 2 2 + 3 2 + + n 2 n 3 By Stolz-Ces a ˋ ro theorem = lim n ( n + 1 ) 2 ( n + 1 ) 3 n 3 = lim n n 2 + 2 n + 1 3 n 2 + 3 n + 1 = lim n 1 + 2 n + 1 n 2 3 + 3 n + 1 n 2 = 1 3 0.333 \begin{aligned} L&=\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \cdots+ n^2}{n^3} &\small \color{#3D99F6}\text{By Stolz-Cesàro theorem} \\&=\lim_{n\to\infty} \frac{(n+1)^2}{(n+1)^3-n^3} \\&=\lim_{n\to\infty} \frac{n^2+2n+1}{3n^2+3n+1} \\&=\lim_{n\to\infty} \frac{1+\frac 2n+\frac 1{n^2}}{3+\frac 3n+\frac 1{n^2}} \\&=\frac 13\approx\boxed{0.333} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...