Limited trigonometry

Calculus Level 5

r = 1 [ 1 2 r tan ( π / 4 2 r ) ] \large \sum_{r=1}^\infty \left[ \frac1{2^r} \tan\left( \frac{\pi /4}{2^r} \right) \right ]

If the series above equals to A π B + C A\pi^B + C for integers A , B A,B and C C , find the value of A × B × C A\times B\times C .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Satyajit Mohanty
Aug 7, 2015

This is just a similar to my problem: Not an usual Trigonometric Summation! .

This is the same solution I had also posted there.

We have (By-multiplying Numerator and Denominator by sin ( x 2 n ) \sin\left(\dfrac{x}{2^n}\right) ):

lim n cos ( x 2 ) cos ( x 2 2 ) cos ( x 2 3 ) cos ( x 2 n ) = sin ( x ) x \lim_{n \to \infty} \cos \left(\dfrac{x}{2} \right)\cos \left(\dfrac{x}{2^2} \right)\cos\left(\dfrac{x}{2^3} \right) \ldots \cos \left(\dfrac{x}{2^n} \right) = \dfrac{\sin(x)}{x}

Differentiating above, we obtain:

n = 1 1 2 n tan ( x 2 n ) = 1 x cot ( x ) \sum_{n=1}^{\infty} \dfrac{1}{2^n} \tan\left(\dfrac{x}{2^n}\right)=\dfrac1x -\cot(x)

We'll apply the above result in a step below. Now,

L = lim n k = 1 n 1 2 k tan ( π 4 2 k ) = lim n k = 1 n 1 2 k tan ( π 4 1 2 k ) L = \lim_{n \to \infty} \sum_{k=1}^n \dfrac{1}{2^k} \tan\left(\dfrac{\pi}{4\cdot2^{k}}\right) = \lim_{n \to \infty} \sum_{k=1}^n \dfrac{1}{2^k} \tan\left(\dfrac{\pi}{4} \cdot \dfrac{1}{2^k}\right)

= lim n n = 1 1 2 n tan ( x 2 n ) = \lim_{n \to \infty} \sum_{n=1}^{\infty} \dfrac{1}{2^n} \tan\left(\dfrac{x}{2^n}\right) where x = π 4 x=\dfrac{\pi}{4} .

= 1 x cot ( x ) = 4 π cot ( π 4 ) = 4 π 1 =\dfrac1x - \cot(x) = \dfrac{4}{\pi} - \cot\left(\dfrac{\pi}{4}\right) =\dfrac{4}{\pi} - 1

So, A = 4 , B = 1 , C = 1 , A × B × C = 4 A=4, B=-1, C=-1, A \times B \times C=\boxed{4} .

There is a trigonometric identity -

c o t ( x ) + 1 2 t a n ( x 2 ) = 1 2 c o t ( x 2 ) cot(x) + \frac{1}{2} tan\left(\frac{x}{2}\right) = \frac{1}{2} cot\left(\frac{x}{2}\right)

which looks quite too obvious and can be used to much importance in this problem.

Kartik Sharma - 5 years, 10 months ago

Log in to reply

How can this identity be used in this problem?

Satyajit Mohanty - 5 years, 10 months ago

Log in to reply

Add and subtract c o t ( x ) cot(x) in the summation.

Then, it would become something like:

c o t ( π / 4 ) + c o t ( π / 4 ) + 1 2 t a n ( π / 8 ) + 1 4 t a n ( π / 16 ) + . . . -cot(\pi/4) + cot(\pi/4) + \frac{1}{2} tan(\pi/8) + \frac{1}{4}tan(\pi/16)+...

c o t ( π / 4 ) + 1 2 c o t ( π / 8 ) + 1 4 t a n ( π / 16 ) + . . . -cot(\pi/4) + \frac{1}{2}cot(\pi/8) + \frac{1}{4}tan(\pi/16)+...

c o t ( π / 4 ) + 1 2 ( c o t ( π / 8 ) + 1 2 t a n ( π / 16 ) ) + . . . -cot(\pi/4) +\frac{1}{2}\left(cot(\pi/8) + \frac{1}{2}tan(\pi/16)\right)+...

c o t ( π / 4 ) + 1 4 c o t ( π / 16 ) + 1 8 t a n ( π / 32 ) + . . . -cot(\pi/4) + \frac{1}{4}cot(\pi/16) + \frac{1}{8}tan(\pi/32)+...

and repeating the process we can get

c o t ( π / 4 ) + 1 2 n c o t ( π 2 n + 2 ) -cot(\pi/4) + \frac{1}{{2}^{n}}cot\left(\frac{\pi}{{2}^{n+2}}\right)

Kartik Sharma - 5 years, 10 months ago

Log in to reply

@Kartik Sharma Good Idea! Lets see what this implicates further.

Satyajit Mohanty - 5 years, 10 months ago

Log in to reply

@Satyajit Mohanty What will it implicate further? It has given the answer. I didn't get you.

Kartik Sharma - 5 years, 10 months ago

Log in to reply

@Kartik Sharma I meant to say that I'm working on this identity to frame a good problem.

Satyajit Mohanty - 5 years, 10 months ago

Log in to reply

@Satyajit Mohanty i just pressed 4 and it was right bingo!!!!!!!

Akash singh - 5 years, 10 months ago
Aditya Kumar
Aug 7, 2015

L e t A = r = 1 n c o s ( x 2 r ) . . . . . . . ( 1 ) F i r s t t r y t o p r o v e t h a t A = 1 2 n s i n x . c o s e c ( x 2 ) . . . . . . . . . . . ( 2 ) T a k i n g l o g o n b o t h s i d e s i n e q n 1 a n d d i f f e r e n t i a t i n g w r t x , A A = r = 1 n ( 1 2 r . t a n ( x 2 r ) ) N o w f i n d A f r o m e q n 2 a n d s u b s t i t u t e . N o w a f t e r s u b s t i t u t i o n s w e g e t lim n r = 1 n ( 1 2 r . t a n ( x 2 r ) ) = 1 x c o t x lim n r = 1 n ( 1 2 r . t a n ( π 4 2 r ) ) = 4 π 1 Let\quad A=\prod _{ r=1 }^{ n }{ cos\left( \frac { x }{ { 2 }^{ r } } \right) } .......(1)\\ First\quad try\quad to\quad prove\quad that\\ A=\frac { 1 }{ { 2 }^{ n } } sinx.cosec\left( \frac { x }{ { 2 } } \right) ...........(2)\\ Taking\quad log\quad on\quad both\quad sides\quad in\quad eqn\quad 1\\ and\quad differentiating\quad wrt\quad x,\\ \frac { { A }' }{ A } ={ { \sum _{ r=1 }^{ n }{ \left( \frac { 1 }{ { 2 }^{ r } } .tan\left( \frac { x }{ { 2 }^{ r } } \right) \right) } } }\\ Now\quad find\quad A'\quad from\quad eqn\quad 2\quad and\quad substitute.\\ Now\quad after\quad substitutions\quad we\quad get\\ \therefore \lim _{ n\rightarrow \infty }{ \sum _{ r=1 }^{ n }{ \left( \frac { 1 }{ { 2 }^{ r } } .tan\left( \frac { x }{ { 2 }^{ r } } \right) \right) } } =\frac { 1 }{ x } -cotx\\ \therefore \lim _{ n\rightarrow \infty }{ \sum _{ r=1 }^{ n }{ \left( \frac { 1 }{ { 2 }^{ r } } .tan\left( \frac { \frac { \pi }{ 4 } }{ { 2 }^{ r } } \right) \right) } } =\frac { 4 }{ \pi } -1

Sourabh Jangid
Dec 26, 2016

JUST USE THE IDENTITY , tan(A) = cot(A) - 2cot(2A) , AND THIS WILL RESULT IN A TELESCOPING SEREIS

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...