Limiting Trigo 2

Calculus Level 5

Evaluate l i m x 0 + 1 + ( t a n x s i n x ) + ( t a n x s i n x ) + ( t a n x s i n x ) + . . . 1 + x 3 + x 3 + x 3 + . . . \begin{matrix} lim \\ x\rightarrow { 0 }^{ + } \end{matrix}\frac { -1+\sqrt { (tan\quad x-sin\quad x)+\sqrt { (tan\quad x-sin\quad x)+\sqrt { (tan\quad x-sin\quad x)+...\infty } } } }{ -1+\sqrt { { x }^{ 3 }+\sqrt { { x }^{ 3 }+\sqrt { { x }^{ 3 }+...\infty } } } }


To try more such problems click here .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

@Murugesh M here is the solution please refer to it.

L e t y = ( t a n x s i n x ) + ( t a n x s i n x ) + . . . Let\quad \quad \quad \quad y\quad =\sqrt { (tan\quad x-sin\quad x)+\sqrt { (tan\quad x-sin\quad x)+...\infty } }

y = ( t a n x s i n x ) + y \Rightarrow \quad \quad \quad \quad y =\sqrt { (tan\quad x-sin\quad x)+y }

y 2 y ( t a n x s i n x ) = 0 \Rightarrow \quad \quad \quad \quad { y }^{ 2 }-y-(tan\quad x-sin\quad x)=0

y = 1 + 1 + ( t a n ( x ) s i n ( x ) ) 4 2 [ y > 0 ] . . . ( i ) \Rightarrow \quad \quad \quad { y=\frac { 1+\sqrt { 1+\left( tan\left( x \right) -sin\left( x \right) \right) 4 } }{ 2 } \quad \quad \quad \quad \left[ \because \quad y>0 \right] ...(i) }

A l s o l e t , z = x 3 + x 3 + x 3 + . . . Also\quad let,\quad \quad \quad z=\sqrt { { x }^{ 3 }+\sqrt { { x }^{ 3 }+\sqrt { { x }^{ 3 }+...\infty } } }

z = x 3 + z z 2 z x 3 = 0 \Rightarrow \quad \quad \quad z=\sqrt { { x }^{ 3 }+z } \quad \quad \Rightarrow { z }^{ 2 }-z-{ x }^{ 3 }=0\quad

z = 1 + 1 + 4 x 3 2 [ z > 0 ] . . . ( i i ) \Rightarrow \quad \quad z=\frac { 1+\sqrt { 1+4{ x }^{ 3 } } }{ 2 } \quad \quad \quad \left[ \because \quad \quad z>0 \right] ...(ii)\quad

\therefore \quad \quad From (i) and (ii),

l i m x 0 + 1 + ( t a n x s i n x ) + ( t a n x s i n x ) + . . . 1 + x 3 + x 3 + x 3 + . . . \begin{matrix} lim \\ x\rightarrow { 0 }^{ + } \end{matrix}\frac { -1+\sqrt { (tan\quad x-sin\quad x)+\sqrt { (tan\quad x-sin\quad x)+...\infty } } }{ -1+\sqrt { { x }^{ 3 }+\sqrt { { x }^{ 3 }+\sqrt { { x }^{ 3 }+...\infty } } } }

= l i m x 0 + 1 + 1 + 1 + ( t a n ( x ) s i n ( x ) ) 4 2 1 + 1 + 1 + 4 x 3 2 =\begin{matrix} lim \\ x\rightarrow { 0 }^{ + } \end{matrix}\frac { -1+\frac { 1+\sqrt { 1+\left( tan\left( x \right) -sin\left( x \right) \right) 4 } }{ 2 } }{ -1+\frac { 1+\sqrt { 1+4{ x }^{ 3 } } }{ 2 } }

= l i m x 0 + 1 + 1 + ( t a n ( x ) s i n ( x ) ) 4 1 + 1 + 4 x 3 =\begin{matrix} lim \\ x\rightarrow { 0 }^{ + } \end{matrix}\frac { -1+\sqrt { 1+\left( tan\left( x \right) -sin\left( x \right) \right) 4 } }{ -1+\sqrt { 1+4{ x }^{ 3 } } }

Rationalising numerator and denominator we get,

= l i m x 0 + 4 ( t a n ( x ) s i n ( x ) ) ( 1 + 1 + 4 x 3 ) 4 x 3 ( 1 + 1 + 4 ( t a n ( x ) s i n ( x ) ) ) =\begin{matrix} lim \\ x\rightarrow { 0 }^{ + } \end{matrix}\frac { 4\left( tan\left( x \right) -sin\left( x \right) \right) \left( 1+\sqrt { 1+4{ x }^{ 3 } } \right) }{ 4{ x }^{ 3 }\left( 1+\sqrt { 1+4\left( tan\left( x \right) -sin\left( x \right) \right) } \right) }

= l i m x 0 + 4 ( s i n ( x ) c o s ( x ) s i n ( x ) 1 ) ( 1 + 1 + 4 x 3 ) 4 x 3 ( 1 + 1 + 4 ( t a n ( x ) s i n ( x ) ) ) =\begin{matrix} lim \\ x\rightarrow { 0 }^{ + } \end{matrix}\frac { 4\left( \frac { sin\left( x \right) }{ cos\left( x \right) } -\frac { sin\left( x \right) }{ 1 } \right) \left( 1+\sqrt { 1+4{ x }^{ 3 } } \right) }{ 4{ x }^{ 3 }\left( 1+\sqrt { 1+4\left( tan\left( x \right) -sin\left( x \right) \right) } \right) }

= l i m x 0 + s i n ( x ) ( 1 c o s ( x ) ) x 3 c o s ( x ) . ( 1 + 1 + 4 x 3 ) ( 1 + 1 + 4 ( t a n ( x ) s i n ( x ) ) ) =\begin{matrix} lim \\ x\rightarrow { 0 }^{ + } \end{matrix}\frac { sin\left( x \right) \left( 1-cos\left( x \right) \right) }{ { x }^{ 3 }cos\left( x \right) } .\frac { \left( 1+\sqrt { 1+4{ x }^{ 3 } } \right) }{ \left( 1+\sqrt { 1+4\left( tan\left( x \right) -sin\left( x \right) \right) } \right) }

= l i m x 0 + s i n ( x ) x . 2 s i n 2 ( x 2 ) 4 x 2 4 . 1 c o s ( x ) . ( 1 + 1 + 4 x 3 ) ( 1 + 1 + 4 ( t a n ( x ) s i n ( x ) ) ) =\begin{matrix} lim \\ x\rightarrow { 0 }^{ + } \end{matrix}\frac { sin\left( x \right) }{ x } .\frac { 2{ sin }^{ 2 }\left( \frac { x }{ 2 } \right) }{ \frac { 4{ x }^{ 2 } }{ 4 } } .\frac { 1 }{ cos\left( x \right) } .\frac { \left( 1+\sqrt { 1+4{ x }^{ 3 } } \right) }{ \left( 1+\sqrt { 1+4\left( tan\left( x \right) -sin\left( x \right) \right) } \right) }

= 1. 1 2 . 1. ( 1 + 1 ) ( 1 + 1 ) = 1 2 = 0.5 =1.\frac { 1 }{ 2 } .1.\frac { \left( 1+1 \right) }{ \left( 1+1 \right) } =\frac { 1 }{ 2 } =\quad \boxed{0.5}

Moderator note:

Note that we cannot simply substitute x = 0 x =0 into the limit, because the function is not continuous.

Recall that lim x 0 + x + x + = 1 0 + 0 + \lim_{x \rightarrow 0^+} \sqrt{ x + \sqrt{x + \ldots } } = 1 \neq \sqrt{0+\sqrt{0+\ldots} } .

@Harshvardhan Mehta amazing problem ,

Rudraksh Sisodia - 5 years, 1 month ago

Log in to reply

Thanks a lot.. ¨ \ddot \smile
Do try my other problems using the link given in the question.

Harshvardhan Mehta - 5 years, 1 month ago

Log in to reply

i was getting 1/8 :( idk y !

A Former Brilliant Member - 4 years, 1 month ago

Log in to reply

@A Former Brilliant Member can you post your solution? i'll look onto it

Harshvardhan Mehta - 4 years ago

Log in to reply

@Harshvardhan Mehta abhi nhi kr sakta bhaiya , bahar hu vacation pr :)

Log in to reply

@A Former Brilliant Member ohk do it whenever you are back :)

Harshvardhan Mehta - 4 years ago

@A Former Brilliant Member waiting for advanced result !

Nice problem

Kumar Krish - 2 years, 4 months ago

Thanks. Got it :)

Murugesh M - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...