Evaluate l i m x → 0 + − 1 + x 3 + x 3 + x 3 + . . . ∞ − 1 + ( t a n x − s i n x ) + ( t a n x − s i n x ) + ( t a n x − s i n x ) + . . . ∞
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Note that we cannot simply substitute x = 0 into the limit, because the function is not continuous.
Recall that lim x → 0 + x + x + … = 1 = 0 + 0 + … .
@Harshvardhan Mehta amazing problem ,
Log in to reply
Thanks a lot..
⌣
¨
Do try my other problems using the link given in the question.
Log in to reply
i was getting 1/8 :( idk y !
Log in to reply
@A Former Brilliant Member – can you post your solution? i'll look onto it
Log in to reply
@Harshvardhan Mehta – abhi nhi kr sakta bhaiya , bahar hu vacation pr :)
Log in to reply
@A Former Brilliant Member – ohk do it whenever you are back :)
@A Former Brilliant Member – waiting for advanced result !
Nice problem
Thanks. Got it :)
Problem Loading...
Note Loading...
Set Loading...
@Murugesh M here is the solution please refer to it.
L e t y = ( t a n x − s i n x ) + ( t a n x − s i n x ) + . . . ∞
⇒ y = ( t a n x − s i n x ) + y
⇒ y 2 − y − ( t a n x − s i n x ) = 0
⇒ y = 2 1 + 1 + ( t a n ( x ) − s i n ( x ) ) 4 [ ∵ y > 0 ] . . . ( i )
A l s o l e t , z = x 3 + x 3 + x 3 + . . . ∞
⇒ z = x 3 + z ⇒ z 2 − z − x 3 = 0
⇒ z = 2 1 + 1 + 4 x 3 [ ∵ z > 0 ] . . . ( i i )
∴ From (i) and (ii),
l i m x → 0 + − 1 + x 3 + x 3 + x 3 + . . . ∞ − 1 + ( t a n x − s i n x ) + ( t a n x − s i n x ) + . . . ∞
= l i m x → 0 + − 1 + 2 1 + 1 + 4 x 3 − 1 + 2 1 + 1 + ( t a n ( x ) − s i n ( x ) ) 4
= l i m x → 0 + − 1 + 1 + 4 x 3 − 1 + 1 + ( t a n ( x ) − s i n ( x ) ) 4
Rationalising numerator and denominator we get,
= l i m x → 0 + 4 x 3 ( 1 + 1 + 4 ( t a n ( x ) − s i n ( x ) ) ) 4 ( t a n ( x ) − s i n ( x ) ) ( 1 + 1 + 4 x 3 )
= l i m x → 0 + 4 x 3 ( 1 + 1 + 4 ( t a n ( x ) − s i n ( x ) ) ) 4 ( c o s ( x ) s i n ( x ) − 1 s i n ( x ) ) ( 1 + 1 + 4 x 3 )
= l i m x → 0 + x 3 c o s ( x ) s i n ( x ) ( 1 − c o s ( x ) ) . ( 1 + 1 + 4 ( t a n ( x ) − s i n ( x ) ) ) ( 1 + 1 + 4 x 3 )
= l i m x → 0 + x s i n ( x ) . 4 4 x 2 2 s i n 2 ( 2 x ) . c o s ( x ) 1 . ( 1 + 1 + 4 ( t a n ( x ) − s i n ( x ) ) ) ( 1 + 1 + 4 x 3 )
= 1 . 2 1 . 1 . ( 1 + 1 ) ( 1 + 1 ) = 2 1 = 0 . 5