The Past, The Present and The Future!!

Calculus Level 3

Compute lim n 2016 ( 1 2015 + 2 2015 + + n 2015 ) n 2016 2016 ( 1 2014 + 2 2014 + + n 2014 ) . \large \lim_{ n\to{\infty}}{\dfrac{ 2016(1^{2015}+2^{2015}+ \cdots +n^{2015}) - n^{2016}}{2016(1^{2014}+2^{2014}+\cdots+n^{2014})}}.


The answer is 1007.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Aman Rajput
Jul 15, 2016

We are going to use Stolz-Cesaro theorem here.

lim n 2016 ( 1 2015 + 2 2015 + + n 2015 ) n 2016 2016 ( 1 2014 + 2 2014 + + n 2014 \displaystyle \lim_{n \to \infty} \frac{2016(1^{2015}+2^{2015}+\cdots+n^{2015})-n^{2016}}{2016(1^{2014}+2^{2014}+\cdots+n^{2014}}

Let a n = 2016 ( 1 2015 + 2 2015 + + n 2015 ) n 2016 a_n = 2016(1^{2015}+2^{2015}+\cdots+n^{2015})-n^{2016} b n = 2016 ( 1 2014 + 2 2014 + + n 2014 ) b_n = 2016(1^{2014}+2^{2014}+\cdots+n^{2014})

Using Stolz theorem. lim n a n b n = lim n a n + 1 a n b n + 1 b n \displaystyle \lim_{n \to \infty} \frac{a_n}{b_n}=\lim_{n \to \infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}

lim n 2016 ( n + 1 ) 2015 ( n + 1 ) 2016 + n 2016 2016 ( n + 1 ) 2014 \displaystyle \lim_{n \to \infty} \frac{2016(n+1)^{2015}-(n+1)^{2016}+n^{2016}}{2016(n+1)^{2014}}

lim n n + 1 1 2016 ( ( n + 1 ) 2 n 2 ( n n + 1 ) 2014 ) \displaystyle \lim_{n \to \infty} n+1-\frac{1}{2016}\left((n+1)^2-n^2(\frac{n}{n+1})^{2014}\right)

Expand the term using binomial expansion lim n n + 1 1 2016 ( n 2 + 2 n + 1 n 2 ( 1 2014 n + 2029015 n 2 ) ) \displaystyle \lim_{n \to \infty} n+1-\frac{1}{2016}\left(n^2+2n+1-n^2(1-\frac{2014}{n}+\frac{2029015}{n^2}-\cdots)\right)

lim n n + 1 n + 2029104 2016 \displaystyle \lim_{n \to \infty} n+1-n+\frac{2029104}{2016}

2015 2 \boxed{\frac{2015}{2}}

Stolz theorem assumes that the limit a(n+1)-1/b(n+1)-1 exists.. how do you assume that the limit exists before even solving the sum ...?

utk sr - 4 years, 2 months ago

Log in to reply

Because when he wrote the ans that limit does not exist then it replied that 'YOUR ANS MUST BE A NUMBER ' then it was sure that limit will exist and is equal to a number 😁😂😂😁😜😛😏😶😼👾👾✌

Kumar Krish - 2 years ago

I used a more discrete version of L’Hopital’s rule and knew it would work but didn’t know it had its own name. Thanks.

Alex Warneke - 3 years, 7 months ago

Log in to reply

Can you explain how you did that? I am trying to use L’Hopital’s rule here but it didnt work out for me.

Tripty Dubey - 2 years, 2 months ago

Log in to reply

see the attached relevant article.. no hopitals rule here

Aman Rajput - 2 years, 1 month ago

Log in to reply

@Aman Rajput Hahajahahhaahah

Kumar Krish - 2 years ago

Why can't we assume n=1 and solve further you see I can estimate 1to be infinite with respect to 0.1^(million) say.

neeraj dubey - 3 years, 2 months ago

how did you expand (n/n+1)^2014

PRIYAL PATHAK - 2 years, 1 month ago

I hope my solution will be comprehensible enough, especially, for those who equip just elementary maths.

First, it's very easy to prove, by induction, that if we have

j = 1 n j k \displaystyle \sum _{ j=1 }^{ n }{ { j }^{ k } } then the degree of the polynomial obtained(consider as polynomial in n) is k+1.(Note that we're interested in a polynomial of closed form not the form of sum.)

Next, consider the following

j = 1 n [ ( j + 1 ) k j k ] = ( n + 1 ) k 1 = j = 1 n ( k j k 1 + k ( k 1 ) 2 j k 2 + . . . ) \displaystyle \sum _{ j=1 }^{ n }{ { [(j+1) }^{ k }-{ j }^{ k }] } ={ (n+1) }^{ k }-1=\sum _{ j=1 }^{ n }{ \left( k\cdot { j }^{ k-1 }+\frac { k(k-1) }{ 2 } \cdot { j }^{ k-2 }+... \right) }

Using this "telescoping" to help prove the very first result and then it's now clear that the leading order and the second leading order is k and k-1, respectively.

Considering only these first two terms, we get

2016 ( 1 2015 + . . . + n 2015 ) n 2016 2016 ( 1 2014 + . . . + n 2014 ) = 2016 ( n 2016 + 2016 n 2015 2016 2016 2015 2 2016 ( n 2015 2015 ) ) n 2016 2016 ( n 2015 2015 ) 2015 2 \displaystyle \frac { 2016({ 1 }^{ 2015 }+...+{ n }^{ 2015 })-{ n }^{ 2016 } }{ 2016({ 1 }^{ 2014 }+...+{ n }^{ 2014 }) } =\frac { 2016(\frac { { n }^{ 2016 }+2016{ n }^{ 2015 } }{ 2016 } -\frac { 2016\cdot 2015 }{ 2\cdot 2016 } \left( \frac { { n }^{ 2015 } }{ 2015 } \right) )-{ n }^{ 2016 } }{ 2016(\frac { { n }^{ 2015 } }{ 2015 } ) } \rightarrow \frac { 2015 }{ 2 }

note: i have done following assumptions based purely on my observation of pattern 1. coefficient of highest power of the series 1^a +2^a +3^a .. n^a is (1/a+1). 2. coefficient of second highest power of the series 1^a + 2^a + ... n^a is (1/2)

As limit is to infinity,we need to find the ratio of coefficient of highest power of numerator to the coefficient of highest power of denominator.

1^2015 +2^2015 +...n^2015 = (1/2016) n^2016 + (1/2) n^2015 ...

therefore numerator=2016{ (1/2016) n^2016 +(1/2) n^2015 +... } - n^2016 = (1008)*n^2015 +... (n^2016 term gets cancelled)

denominator = 2016{ (1/2015) n^2015 + (1/2) n^2014 .... } = (2016/2015) n^2015 + (1008) n^2014 ... }

therefore answer = (1008)*(2015)/(2016) =2015/2.

Haha I did this too

Andre Bourque - 3 years, 4 months ago

The limit we want to calculate is:

lim n 0 2016 1 n k 2015 n 2016 2016 1 n k 2014 \lim\limits_{n\to0}\frac{2016\sum\limits_1^n k^{2015}-n^{2016}}{2016\sum\limits_1^n k^{2014}}

We can user Faulhaber's formula to rewrite the sums as polynomials with Bernoulli numbers. The formula states that:

1 n k m = 1 m + 1 0 m ( m + 1 k ) B k + n m + 1 k \sum\limits_1^n k^m = \frac{1}{m+1} \sum\limits_0^m \binom{m+1}{k} B_k^+ n^{m+1-k} ,

where B k + B_k^+ are the Bernoulli numbers. There exist several approaches to calculate these, but we don't need their explicit formulation, except B 0 + = 1 B_0^+=1 and B 1 + = 1 2 B_1^+=\frac{1}{2} . Applying Faulhaber's formula to our limit, we get:

lim n 0 0 2015 ( 2016 k ) B k + n 2016 k n 2016 2016 2015 0 2014 ( 2015 k ) B k + n 2015 k = 2015 2016 lim n 0 1 2015 ( 2016 k ) B k + n 2016 k 0 2014 ( 2015 k ) B k + n 2015 k \lim\limits_{n\to0}\frac{\sum\limits_0^{2015}\binom{2016}{k}B_k^+ n^{2016-k} - n^{2016}}{\frac{2016}{2015}\sum\limits_0^{2014}\binom{2015}{k}B_k^+ n^{2015-k}} = \frac{2015}{2016}\lim\limits_{n\to0}\frac{\sum\limits_1^{2015}\binom{2016}{k}B_k^+ n^{2016-k}}{\sum\limits_0^{2014}\binom{2015}{k}B_k^+ n^{2015-k}} .

The only terms that will survive the limit are k = 1 k=1 in the numerator and k = 0 k=0 in the denominator. In other words:

2015 2016 lim n 0 ( 2016 1 ) B 1 + n 2015 ( 2015 0 ) B 0 + n 2015 = 2015 2016 2016 2 lim n 0 n 2015 n 2015 = 2015 2 \frac{2015}{2016}\lim\limits_{n\to0}\frac{\binom{2016}{1}B_1^+ n^{2015}}{\binom{2015}{0}B_0^+ n^{2015}} = \frac{2015}{2016}\frac{2016}{2}\lim\limits_{n\to0}\frac{n^{2015}}{n^{2015}} = \frac{2015}{2} .

i will use Stolz–Cesàro theorem 1

let b n = 2016 ( 1 2014 + 2 2014 + + n 2014 ) b_{n}=2016\left(1^{2014}+2^{2014}+\cdots +n^{2014}\right) then b n + 1 b n = 2016 ( n + 1 ) 2014 > 0 , n N \displaystyle b_{n+1}-b_{n} = 2016(n+1)^{2014}>0, \forall n\in \mathbb{N} or b n < b n + 1 , n N b_{n}<b_{n+1} , \forall n\in \mathbb{N} and lim n b n = lim n 2016 ( 1 2014 + 2 2014 + + n 2014 ) = \displaystyle \lim_{n\rightarrow \infty} b_{n}=\lim_{n\rightarrow \infty} 2016\left(1^{2014}+2^{2014}+\cdots +n^{2014}\right)=\infty

So , if a n = ( 1 2015 + 2 2015 + + n 2015 ) n 2016 \displaystyle a_{n}=\left(1^{2015}+2^{2015}+\cdots +n^{2015}\right) -n^{2016} when lim n a n + 1 a n b n + 1 b n = lim n 2016 ( n + 1 ) 2015 [ ( n + 1 ) 2016 n 2016 ] 2016 ( n + 1 ) 2014 = lim n 2016 ( n 2015 + ( 2015 1 ) n 2014 + ( 2015 2 ) n 2013 + + 2015 n + 1 ) ( 2016 n 2015 + ( 2016 2 ) n 2014 + ( 2016 2 ) n 2014 + + 2016 n + 1 ) 2016 ( n 2014 + ( 2014 1 ) n 2013 + ( 2014 2 ) n 2012 + + 1 ) = lim n 2016 × 2015 2 n 2014 + 2016 × 2015 × 2013 2 n 2013 + n 2016 ( n 2014 + ( 2014 1 ) n 2013 + ( 2014 2 ) n 2012 + + 1 ) = lim n 2016 × 2015 2 2016 = 2015 2 \begin{aligned} \displaystyle \lim_{n\rightarrow \infty} \dfrac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}} &=\displaystyle \lim_{n\rightarrow \infty} \dfrac{2016(n+1)^{2015} - \left[ (n+1)^{2016}-n^{2016}\right]}{2016(n+1)^{2014}} \\ &=\displaystyle \lim_{n\rightarrow \infty} \dfrac{\displaystyle 2016\left( n^{2015}+\binom{2015}{1}n^{2014}+\binom{2015}{2}n^{2013}+\cdots+2015n+1\right)-\left(2016n^{2015}+\binom{2016}{2}n^{2014}+\binom{2016}{2}n^{2014}+\cdots+2016n+1 \right ) }{\displaystyle 2016\left( n^{2014}+\binom{2014}{1}n^{2013}+\binom{2014}{2}n^{2012}+\cdots+1\right)} \\ &=\displaystyle \lim_{n\rightarrow \infty} \dfrac{\displaystyle \dfrac{2016\times 2015}{2}n^{2014}+\dfrac{2016\times 2015\times 2013}{2}n^{2013}+\cdots -n }{\displaystyle 2016\left( n^{2014}+\binom{2014}{1}n^{2013}+\binom{2014}{2}n^{2012}+\cdots+1\right)} \\ &=\displaystyle \lim_{n\rightarrow \infty} \dfrac{\frac{2016\times 2015}{2}}{2016}=\frac{2015}{2} \end{aligned}

we can use Stolz–Cesàro theorem 1 we get

lim n a n b n = lim n ( 1 2015 + 2 2015 + + n 2015 ) n 2016 2016 ( 1 2014 + 2 2014 + + n 2014 ) = lim n a n + 1 a n b n + 1 b n = 2015 2 = 1007.5 \displaystyle \lim_{n \to \infty}\, \dfrac{a_{n}}{b_{n}}=\lim_{n \to \infty}\, \dfrac{\displaystyle \left(1^{2015}+2^{2015}+\cdots +n^{2015}\right) -n^{2016}}{2016\left(1^{2014}+2^{2014}+\cdots +n^{2014}\right)}=\lim_{n \to \infty}\, \dfrac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=\boxed{\displaystyle \dfrac{2015}{2}=1007.5}

Gabriel Chacón
Jan 21, 2019

Let's define S p ( n ) = k = 1 n k p S_p(n)=\displaystyle \sum_{k=1}^{n} k^p .

The sums in the limit can be obtained by applying the following recurring formula:

S p ( n ) = 1 p + 1 [ ( n + 1 ) p + 1 1 ( p + 1 2 ) S p 1 ( n ) . . . ( p + 1 p ) S 1 ( n ) n ] S_p(n)=\frac{1}{p+1}\left[(n+1)^{p+1}-1-{{p+1} \choose 2} S_{p-1}(n)-...-{{p+1} \choose p} S_{1}(n)-n \right]

which I derived some time ago and explained in the following document (in Catalan).

We just need to find the first two terms of the formula for the sum in the numerator and only the first one for the sum in the denominator, as the rest of the terms vanish when n n \to \infty .

S 2015 = n 2016 2016 + n 2015 2 + S_{2015}=\dfrac{n^{2016}}{2016}+\dfrac{n^{2015}}{2}+\ldots

S 2014 = n 2015 2015 + S_{2014}=\dfrac{n^{2015}}{2015}+\ldots

lim n 2016 ( n 2016 2016 + n 2015 2 + ) n 2016 2016 ( n 2015 2015 + ) = lim n 2016 n 2015 2 2016 n 2015 2015 = 2015 2 \displaystyle \lim_{n \to \infty} { \dfrac{ 2016 \left ( \dfrac{n^{2016}}{2016} + \dfrac{n^{2015}}{2}+\ldots \right ) - n^{2016} }{2016 \left ( \dfrac{n^{2015}}{2015}+\ldots \right ) }}=\lim_{n \to \infty} { \dfrac{2016 \cdot \dfrac{n^{2015}}{2} }{2016 \cdot \dfrac{n^{2015}}{2015} } } = \boxed{\dfrac{2015}{2}}

Pierre Carrette
Jun 27, 2018

I used truncated Faulhaber's formula (see https://en.wikipedia.org/wiki/Faulhaber%27s formula) up to second term, i.e. sum (k=1)^n k^p = n^(p+1)/(p+1) + n^p/2 + o(n^p).

We get (here p=2015), Numerator = (p+1) [n^(p+1)/(p+1) + n^p/2 + o(n^p)] - n^(p+1) = (p+1) n^p/2 + o(n^p) and Denominator = (p+1) [n^p/p + n^(p-1)/2 + o(n^(p-1))] = (p+1) n^p/p + o(n^p). Thus, Ratio = Numerator/Denominator = [(p+1) n^p/2 + o(n^p)]/[(p+1) n^p/p + o(n^p)]. For n tends to infinity, the o(.) term can be removed. We get Ratio = p/2. For p=2015, we get ratio = 1007.5.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...