Limit, Sum, Fraction

Calculus Level 3

lim n n + n 2 + n 3 + + n n 1 n + 2 n + 3 n + + n n \displaystyle \lim_{n\to\infty} \dfrac{n + n^2+ n^3 + \cdots + n^n}{1^n + 2^n + 3^n + \cdots + n^n}

What is the value of this limit?


The answer is 0.63212.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

X X
May 6, 2018

Let the limit equals A A

lim n k = 1 n n k n n = lim n n + n 2 + n 3 + n 4 + + n n n n = lim n ( 1 + 1 n + 1 n 2 + 1 n 3 + + 1 n n 1 ) = 1 \begin{aligned} \displaystyle\lim_{n\to\infty}\frac{\displaystyle\sum_{k=1}^{n}n^k}{n^n}&=\lim_{n\to\infty}\frac{n+n^2+n^3+n^4+\cdots+n^n}{n^n} \\ &=\displaystyle\lim_{n\to\infty}\left(1+\frac1n+\frac1{n^2}+\frac1{n^3}+\cdots+\frac1{n^{n-1}}\right)=1\\ \end{aligned}

A = lim n k = 1 n n k k = 1 n k n = lim n n n k = 1 n k n \begin{aligned} A&=\displaystyle\lim_{n\to\infty}\frac{\displaystyle\sum_{k=1}^{n}n^k}{\displaystyle\sum_{k=1}^{n}k^n} \\ &=\displaystyle\lim_{n\to\infty}\frac{n^n}{\displaystyle\sum_{k=1}^{n}k^n} \\ \end{aligned}

1 A = lim n k = 1 n k n n n = lim n 1 n + 2 n + 3 n + 4 n + + n n n n = lim n ( 1 + ( n 1 n ) n + ( n 2 n ) n + ( n 3 n ) n + ) = 1 + 1 e + 1 e 2 + 1 e 3 + = e e 1 , A = e 1 e \begin{aligned} \dfrac1A&=\displaystyle\lim_{n\to\infty}\frac{\displaystyle\sum_{k=1}^{n}k^n}{n^n}\\ &=\displaystyle\lim_{n\to\infty}\frac{1^n+2^n+3^n+4^n+\cdots+n^n}{n^n}\\ &=\displaystyle\lim_{n\to\infty}\left(1+(\frac{n-1}n)^n+(\frac{n-2}n)^n+(\frac{n-3}n)^n+\cdots\right)\\ &=\displaystyle1+\frac1e+\frac1{e^2}+\frac1{e^3}+\cdots=\frac{e}{e-1},A=\boxed{\frac{e-1}{e}}\\ \end{aligned}

You can’t always add limits (n -> +inf) if the sum depends on n.

Nicolas Guignes - 3 years ago

Log in to reply

I think using this"adding limits" is fine,because the series converges,and 1 e n \frac1{e^n} approaches 0.I'll come up with a better explanation for this.

X X - 3 years ago

Log in to reply

Try then to consider u k , n = 1 u_{k,n} = 1 if k = n k = n and 0 0 if k n k \neq n instead of u k , n = ( n k n ) n u_{k,n} = \left(\frac{n-k}{n}\right)^n .

Nicolas Guignes - 3 years ago

Have a look at my solution...

Mark Hennings - 3 years ago

This is a very intuitive approach

Jason Martin - 3 years ago

Log in to reply

well.. i don't know, put i presume this approach has its origin in a very basic thing to be done in similar cases: dividing by n^n both upper and lower sides of the initial fraction... personally i did just that and then i didn't know what to do with those ((n-1)/n)^n :))) so i didn't make it to the end...:((

Nik Gibson - 2 years, 10 months ago

Remarkable observation which I definitely missed out

Anubhav Mahapatra - 3 years ago

The limits are different. The answer is 1.

Miguel Montenegro - 3 years ago

Log in to reply

Yes u are completely wrong

attiksh ansool Panda - 3 years ago

Its because the fractions are zero as their denominator approaches infinity hence the only 1 is left!!!

erica phillips - 3 years ago

Log in to reply

Yes u are very correct

Arinjoy Pramanik - 3 years ago

Elegant approach, I have learned from that!

Kelvin Hong - 3 years ago

Could u pls illustrate on the second last step of your solution(before e summation)!!!

erica phillips - 3 years ago

Log in to reply

e x = lim n ( 1 + x n ) n e^x=\lim_{n\to\infty}(1+\frac xn)^n

X X - 3 years ago

Log in to reply

Not enough. Have a look at my second reply earlier.

Nicolas Guignes - 3 years ago

When we see the expression in the numerator, it is a polynomial of some k-1 degrees and when we see the denominator we find it contains some exponents of n. It is always true that a exponent of n overcomes a polynomial of n. so as n goes to infinity it is actually a very small value divided by a very very large value and is almost same like 1/(infinity). So the Answer should be 0.

Arinjoy Pramanik - 3 years ago

why is the sum n^k = n^n ? could you explain that pls

Sebastian Janker - 3 years ago

Log in to reply

The limit.Look at the first two lines.

X X - 3 years ago

But why didnt u consider the indeterminant form of 1^infinity?

Ben Joyson - 3 years ago

Log in to reply

Just divide both numerator and denominator by n^n. Solve both of them separately.

Ashwini Kumar - 2 years, 12 months ago

How is 2^n=((n-1)/n)^n? The second from the last step?

Jack Oh - 2 years, 10 months ago
Mark Hennings
May 20, 2018

We need a little care with the convergence, here. Certainly N ( n ) = j = 1 n n j = n ( n n 1 ) n 1 N(n) \; = \; \sum_{j=1}^n n^j \; = \; \frac{n(n^n-1)}{n-1} and hence lim n n n N ( n ) = lim n n n 1 ( 1 n n ) = 1 \lim_{n \to \infty}n^{-n}N(n) \; = \; \lim_{n \to \infty} \frac{n}{n-1}\big(1 - n^{-n}\big) \; =\; 1 On the other hand, we have D ( n ) = j = 1 n j n = j = 0 n 1 ( n j ) n D(n) \; = \; \sum_{j=1}^n j^n \; = \; \sum_{j=0}^{n-1}(n-j)^n so that n n D ( n ) = j = 0 n 1 ( 1 j n ) n n^{-n}D(n) \; = \; \sum_{j=0}^{n-1} \big(1 - \tfrac{j}{n}\big)^n We have to be a little careful about letting n n tend to infinity both in the argument ( 1 j n ) n \big(1 - \tfrac{j}{n}\big)^n and as a limit of the sum simultaneously. Since d d x [ ( n + 1 ) ln ( 1 x n + 1 ) n ln ( 1 x n ) ] = x ( n x ) ( n + 1 x ) > 0 0 < x < n \frac{d}{dx}\big[(n+1)\ln(1 - \tfrac{x}{n+1}\big) - n\ln\big(1 - \tfrac{x}{n}\big)\big] \; = \; \frac{x}{(n-x)(n+1-x)} \; > \; 0 \hspace{2cm} 0 < x < n we deduce that ( 1 x n ) n < ( 1 x n + 1 ) n + 1 \big(1 - \tfrac{x}{n}\big)^n < \big(1 - \tfrac{x}{n+1}\big)^{n+1} for 0 < x < n 0 < x < n , and hence ( 1 x n ) n \big(1 - \tfrac{x}{n}\big)^n (for n > x n > x ) converges to e x e^{-x} in a monotonic increasing manner. Thus we deduce that n n D ( n ) n^{-n}D(n) is an increasing sequence, and that n n D ( n ) = j = 0 n 1 ( 1 j n ) n j = 0 n 1 e j < j = 0 e j = 1 1 e 1 = e e 1 n^{-n}D(n) \; = \; \sum_{j=0}^{n-1} \big(1 - \tfrac{j}{n}\big)^n \; \le \; \sum_{j=0}^{n-1} e^{-j} \; < \; \sum_{j=0}^\infty e^{-j} \; = \; \frac{1}{1 - e^{-1}} \; = \; \frac{e}{e-1} for all n n . In particular, this implies that lim n n n D ( n ) \lim_{n \to \infty}n^{-n}D(n) exists. Now, n n D ( n ) j = 0 N 1 ( 1 j n ) n n N n^{-n}D(n) \; \ge \sum_{j=0}^{N-1} \big(1 - \tfrac{j}{n}\big)^n \hspace{2cm} n \ge N for any positive integer N N , and hence (letting n n \to \infty ) e e 1 lim n n n D ( n ) j = 0 N 1 e j \tfrac{e}{e-1} \; \ge \; \lim_{n \to \infty} n^{-n}D(n) \; \ge \; \sum_{j=0}^{N-1} e^{-j} for any positive integer N N . Now we can let N N \to \infty to deduce that lim n n n D ( n ) = e e 1 \lim_{n\to\infty}n^{-n}D(n) \,= \, \tfrac{e}{e-1} . Thus lim n N ( n ) D ( n ) = lim n n n N ( n ) n n D ( n ) = e 1 e = 0.6321205588 \lim_{n \to \infty} \frac{N(n)}{D(n)} \; = \; \lim_{n\to \infty} \frac{n^{-n}N(n)}{n^{-n}D(n)} \; = \; \frac{e-1}{e} \; = \; \boxed{0.6321205588}

Thank you for posting a rigorous argument.

Jason Martin - 3 years ago

Log in to reply

I am concerned about the conclusion from the derivative calculation. Did not the inequality only prove the difference is increasing; not that it is positive (which would be necessary for the exponential sequence to be strictly increasing)?

I think this monotonicity is correct, and a little algebra will show it from the similar property of the defining approximants for e (which can be shown intuitively using the integral definition).

Will Heierman - 3 years ago

Log in to reply

The function is increasing for 0 < x < 1 0 < x < 1 and zero at x = 0 x=0 , and hence positive for 0 < x < 1 0 < x < 1 .

Alternatively, consider applying the AM/GM inequality to n n copies of 1 x n 1 - \tfrac{x}{n} and one copy of 1 1 .

Mark Hennings - 3 years ago

Log in to reply

@Mark Hennings Thanks, Mark! That is what I missed.

Will Heierman - 3 years ago
299792458 萬
May 21, 2018

Relevant wiki: Bernoulli numbers

In the following solution, B n B_n represent the Bernoulli numbers.

A = lim n n + n 2 + . . . + n n 1 + 2 n + . . . + n n \displaystyle A=\lim _{ n\rightarrow \infty }{ \frac { n+{ n }^{ 2 }+...+{ n }^{ n } }{ 1+{ 2 }^{ n }+...+{ n }^{ n } } }

= lim n n n + 1 n n 1 n n + 1 n + 1 + n n 2 + ( n 1 ) B 2 2 n n 1 + ( n 3 ) B 4 4 n n 3 + . . . \displaystyle =\lim _{ n\rightarrow \infty }{ \frac { \frac { { n }^{ n+1 }-n }{ n-1 } }{ \frac { { n }^{ n+1 } }{ n+1 } +\frac { { n }^{ n } }{ 2 } +{n \choose 1}\frac { B_{ 2 } }{ 2 } { n }^{ n-1 }+{n \choose 3}\frac { B_{ 4 } }{ 4 } { n }^{ n-3 }+... } }

= lim n n n + 1 n n 1 n + 1 n n + 1 + n 1 2 n n + ( n 1 ) ( n 1 ) B 2 2 n n 1 + ( n 1 ) ( n 3 ) B 4 4 n n 3 + . . . \displaystyle =\lim _{ n\rightarrow \infty }{ \frac { { n }^{ n+1 }-n }{ \frac { n-1 }{ n+1 } { n }^{ n+1 }+\frac { n-1 }{ 2 } { n }^{ n }+ (n-1){n \choose 1}\frac { B_{ 2 } }{ 2 } { n }^{ n-1 }+(n-1){n \choose 3}\frac { B_{ 4 } }{ 4 } { n }^{ n-3 }+... } }

(ignoring all n n { n }^{ n } , n n 1 { n }^{ n-1 } , n n 2 { n }^{ n-2 } …)

= 1 1 + 1 2 + 1 1 ! B 2 2 + 1 3 ! B 4 4 + . . . \displaystyle =\frac { 1 }{ 1+\frac { 1 }{ 2 } +\frac { 1 }{ 1! } \frac { B_{ 2 } }{ 2 } +\frac { 1 }{ 3! } \frac { B_{ 4 } }{ 4 } +... }

= 1 k = 0 B k k ! + 1 \displaystyle =\frac { 1 }{\displaystyle \sum _{ k=0 }^{ \infty }{ \frac { B_{ k } }{ k! } +1 } } (with B 0 = 1 B_0=1 , B 1 = 1 2 B_1=-\frac {1}{2} , B 3 = B 5 = B 7 = . . . = 0 B_3=B_5=B_7=...=0 )

On the other hand, we have f ( x ) = x e x 1 = k = 0 B k x k k ! \displaystyle f(x)=\frac { x }{ { e }^{ x }-1 } = \displaystyle \sum _{ k=0 }^{ \infty }{ B_{ k } } \frac { { x }^{ k } }{ k! } , so

A = 1 k = 0 B k k ! + 1 = 1 f ( 1 ) + 1 = e 1 e = 1 1 e \displaystyle A=\frac { 1 }{\displaystyle \sum _{ k=0 }^{ \infty }{ \frac { B_{ k } }{ k! } +1 } } = \frac { 1 }{ f(1)+1} = \frac { e-1 }{e} = 1-\frac {1}{e}

can you give detailed explanation?. you are ignoring some terms. it is not clear.

Srikanth Tupurani - 2 years, 11 months ago

ok i got it.

Srikanth Tupurani - 2 years, 11 months ago
Uros Stojkovic
May 25, 2018

lim n n + n 2 + n 3 + + n n 1 n + 2 n + 3 n + + n n = lim n n n ( 1 + 1 n + 1 n 2 + 1 n 3 + + 1 n n 1 ) n n ( 1 + ( n 1 n ) n + ( n 2 n ) n + ( n 3 n ) n + + ( n ( n 1 ) n ) n ) = lim n k = 0 n 1 ( 1 n ) k k = 0 n 1 ( 1 k n ) n = 1 k = 0 e k = 1 1 1 e 1 = 1 e 1 0.63212 \begin{aligned}&\lim_{n \to \infty}\dfrac{n + n^2 + n^3 + \cdots + n^{n}}{1^{n} + 2^{n} + 3^{n} + \cdots + n^{n}} = \\ &\lim_{n \to \infty}\dfrac{n^{n}\left ( 1 + \frac{1}{n} + \frac{1}{n^{2}} + \frac{1}{n^3} + \cdots + \frac{1}{n^{n-1}}\right )}{n^{n}\left (1 + \left ( \frac{n-1}{n}\right)^{n} + \left ( \frac{n-2}{n} \right )^{n} + \left ( \frac{n-3}{n} \right )^{n} + \cdots + \left ( \frac{n-(n-1)}{n} \right )^{n}\right )} = \\ &\lim_{n \to \infty}\dfrac{\sum_{k = 0}^{n-1}\left ( \frac{1}{n}\right)^{k}}{\sum_{k = 0}^{n-1}\left (1 - \frac{k}{n}\right)^{n}} = \\ &\dfrac{1}{\sum_{k = 0}^{\infty}e^{-k}} = \dfrac{1}{\frac{1}{1 - e^{-1}}} = 1-e^{-1} \approx 0.63212\end{aligned}

Rocco Dalto
May 23, 2018

n n 1 = ( n 1 ) ( n n 1 + n n 2 + . . . + 1 ) n n 1 + n n 2 + . . . + 1 = n n 1 n 1 p = 1 n n p = n ( n n 1 ) n 1 n^n - 1 = (n - 1)(n^{n - 1} + n^{n - 2} + ... + 1) \implies n^{n - 1} + n^{n - 2} + ... + 1 = \dfrac{n^n - 1}{n - 1} \implies \sum_{p = 1}^{n} n^p = \dfrac{n(n^n - 1)}{n - 1}

Dividing numerator and denominator by n n lim n n + n 2 + n 3 + + n n 1 n + 2 n + 3 n + + n n = n^n \implies \displaystyle \lim_{n\to\infty} \dfrac{n + n^2+ n^3 + \cdots + n^n}{1^n + 2^n + 3^n + \cdots + n^n} = lim n ( 1 1 n n ) ( 1 + 1 n 1 ) j = 0 n 1 ( 1 j n ) n = \lim_{n \rightarrow \infty} \dfrac{(1 - \dfrac{1}{n^n})(1 + \dfrac{1}{n - 1})}{\sum_{j = 0}^{n - 1} (1 -\dfrac{j}{n})^n} = 1 n = 0 ( 1 e ) n = 1 1 1 1 e = e 1 e 0.63212 \dfrac{1}{\sum_{n = 0}^{\infty} (\dfrac{1}{e})^n} = \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e}}} = \dfrac{e - 1}{e} \approx \boxed{0.63212}

Miha Smaka
May 24, 2018

Obviously only for verification purposes.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...