Linearize the Trigonometric Powers Part 4

Geometry Level 3

cos 5 θ = a 5 cos ( 5 θ ) + a 3 cos ( 3 θ ) + a 1 cos ( θ ) \cos^5 \theta = a_5 \cos (5 \theta) + a_3 \cos (3 \theta) + a_1 \cos ( \theta)

Above shows a trigonometric identity for constants a 1 , a 3 , a 5 a_1, a_3, a_5 .

What is the value of 3 a 3 a 1 a 5 \large \frac {3a_3 - a_1}{a_5} ?

See Part 1 , Part 2 , and Part 3 .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Jake Lai
May 22, 2015

I don't know why this never occurred to me before. Here's a way to find a way to express cos n θ \cos^{n} \theta as a linear combination of cos ( k θ ) \cos(k\theta) for general n n :

Recall that

cos θ = e i θ + e i θ 2 \cos \theta = \frac{e^{i\theta}+e^{-i\theta}}{2}

Let y = e i θ y = e^{i\theta} . Taking both sides to the power of n n we get

cos n θ = ( y + 1 y 2 ) n = 1 2 n k = 0 n ( n k ) y k y n k + 1 2 n 1 k = 0 n ( n k ) y 2 k n 2 \cos^{n} \theta = \left( \frac{y+\frac{1}{y}}{2} \right)^{n} = \frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k} \frac{y^{k}}{y^{n-k}} + \frac{1}{2^{n-1}} \sum_{k=0}^{n} \binom{n}{k} \frac{y^{2k-n}}{2}

= 1 2 n 1 k = 0 n / 2 ( n k ) y 2 k n + y 2 ( n k ) n 2 = 1 2 n 1 k = 0 n / 2 ( n k ) cos ( ( n 2 k ) θ ) = \frac{1}{2^{n-1}} \sum_{k=0}^{\lceil n/2 \rceil} \binom{n}{k} \frac{y^{2k-n} + y^{2(n-k)-n}}{2} = \boxed{\displaystyle \frac{1}{2^{n-1}} \sum_{k=0}^{\lceil n/2 \rceil} \binom{n}{k} \cos((n-2k)\theta)}

Moderator note:

Great observation!

The conversion of trigonometric expressions into Euler form often allows us to easily relate cos k θ \cos ^k \theta with cos ( n θ ) \cos (n \theta) .

Very nicely done. It's amazing you came to this realization on your own!

Chung Kevin - 6 years ago

Log in to reply

Thank you! I don't think it's anything special, but the closed form was surprisingly neat.

Jake Lai - 5 years, 11 months ago
Rohit Ner
May 2, 2015

cos 5 θ = cos 3 θ . cos 2 θ = ( 3 cos θ + cos 3 θ 4 ) ( 1 + cos 2 θ 2 ) = 1 8 ( 3 cos θ + 3 cos θ cos 2 θ + cos 3 θ + cos 3 θ cos 2 θ ) = 1 8 ( 3 cos θ + 3 2 ( cos 3 θ + cos θ ) + cos 3 θ + 1 2 ( cos 5 θ + cos θ ) ) = 1 16 ( cos 5 θ + 5 cos 3 θ + 10 cos θ ) cos 5 θ = 1 16 cos 5 θ + 5 16 cos 3 θ + 10 16 cos θ \cos ^{ 5 }{ \theta } =\cos ^{ 3 }{ \theta } .\cos ^{ 2 }{ \theta } \\ \\ \quad \quad \quad \quad \quad =\left( \frac { 3\cos { \theta } +\cos { 3\theta } }{ 4 } \right) \left( \frac { 1+\cos { 2\theta } }{ 2 } \right) \\ \\ \quad \quad \quad \quad \quad =\frac { 1 }{ 8 } \left( 3\cos { \theta } +3\cos { \theta } \cos { 2\theta +\cos { 3\theta } +\cos { 3\theta } \cos { 2\theta } } \right) \\ \\ \quad \quad \quad \quad \quad =\frac { 1 }{ 8 } \left( 3\cos { \theta } +\frac { 3 }{ 2 } \left( \cos { 3\theta } +\cos { \theta } \right) +\cos { 3\theta } +\quad \frac { 1 }{ 2 } \left( \cos { 5\theta } +\cos { \theta } \right) \right) \\ \\ \quad \quad \quad \quad \quad =\frac { 1 }{ 16 } \left( \cos { 5\theta } +5\cos { 3\theta } +10\cos { \theta } \right) \\ \\ \cos ^{ 5 }{ \theta } =\frac { 1 }{ 16 } \cos { 5\theta } +\frac { 5 }{ 16 } \cos { 3\theta } +\frac { 10 }{ 16 } \cos { \theta }

Chew-Seong Cheong
May 22, 2015

From the following two identities:

{ cos 5 θ = 16 cos 5 θ 20 cos 3 θ + 5 cos θ cos 3 θ = 4 cos 3 θ 3 cos θ \begin{cases} \cos{5\theta} = 16\cos^5{\theta} - 20\cos^3{\theta} + 5 \cos{\theta} \\ \cos{3\theta} = 4\cos^3{\theta} - 3 \cos{\theta} \end{cases}

cos 5 θ = 16 cos 5 θ 20 cos 3 θ + 5 cos θ = 16 cos 5 θ 5 ( 4 cos 3 θ 3 cos θ ) 15 cos θ + 5 cos θ = 16 cos 5 θ 5 cos 3 θ 10 cos θ 16 cos 5 θ = cos 5 θ + 5 cos 3 θ + 10 cos θ cos 5 θ = 1 16 cos 5 θ + 5 16 cos 3 θ + 10 16 cos θ \begin{aligned} \cos{5\theta} &= 16\cos^5{\theta} - 20\cos^3{\theta} + 5 \cos{\theta} \\ & = 16\cos^5{\theta} - 5(4\cos^3{\theta} - 3\cos{\theta}) - 15\cos{\theta} + 5\cos{\theta} \\ & = 16\cos^5{\theta} - 5\cos{3\theta} - 10\cos{\theta} \\ \Rightarrow 16\cos^5{\theta} & = \cos{5\theta} + 5\cos{3\theta} + 10\cos{\theta} \\ \cos^5{\theta} & = \frac{1}{16}\cos{5\theta} + \frac{5}{16}\cos{3\theta} + \frac{10}{16}\cos{\theta} \end{aligned}

3 a 3 a 1 a 5 = 3 × 5 16 10 16 1 16 = 5 \Rightarrow \dfrac{3a_3-a_1}{a_5} = \dfrac {3\times \frac{5}{16}-\frac{10}{16}}{\frac{1}{16}} = \boxed{5}

Moderator note:

You were able to tease out the identity by comparing coefficients.

Can this approach be generalized?

Thanks for your challenge. I see Jake Lai has answer the challenge. Here is how it is done with induction.

\(\begin{array} {} \cos{\theta} = \cos{\theta} & \\ \cos{2\theta} = 2\cos^2{\theta} - 1 & \Rightarrow \cos^2{\theta} = \frac{1}{2} \left( \cos{2\theta} + 1 \right) \\ \cos{3\theta} = 4\cos^3{\theta} - 3\cos{\theta} & \Rightarrow \cos^3{\theta} = \frac{1}{4} \left( \cos{3\theta} + 3\cos{\theta} \right) \\ \cos{4\theta} = 8\cos^4{\theta} - 8\cos^2{\theta} + 1 & \Rightarrow \cos^4{\theta} = \frac{1}{8} \left( \cos{4\theta} + 4\cos{2\theta} + 6 \right) \\ \cos{5\theta} = 16 \cos^5 {\theta} - 20\cos^3{\theta} + 5\cos{\theta} & \Rightarrow \cos^5{\theta} = \frac{1}{16} \left( \cos{5\theta} + 5\cos{3\theta} + 10\cos{\theta} \right) \end{array} \)

cos n θ = 1 2 n 1 k = 0 n 2 ( n k ) cos ( [ n 2 k ] θ ) \Rightarrow \cos^n {\theta} = \dfrac{1}{2^{n-1}} \displaystyle \sum_{k=0}^{\left \lceil \frac{n}{2} \right \rceil} {\begin{pmatrix} n \\ k \end{pmatrix} \cos{([n-2k]\theta)}}

Chew-Seong Cheong - 6 years ago

Log in to reply

This is not induction.

Pi Han Goh - 6 years ago

Log in to reply

I think he means that we "induct" to find cos n θ \cos n \theta in terms of cos n θ \cos^n \theta and other powers, and then substitute back in to obtain the multiple angle form.

Though, I don't see how the final step actually occurs.

Chung Kevin - 6 years ago

Log in to reply

@Chung Kevin The Pascal triangle could help determine the coefficients of (cos(theta) )^6

Vijay Simha - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...