Logarithms, Trigonometry, Integrals, Part 2

Calculus Level 5

0 π / 2 ln ( sin x ) ln ( tan x ) d x \displaystyle \int _{0}^{\pi/2} \ln(\sin x) \ln(\tan x) \space \mathrm{d}x

Given that the above integral equals to π A B \frac {\pi^A}{B} for positive integers A , B A,B , what is the value of A + B A+B ?

This is original. Check out my Set


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We start with the known result from part 1 of this problem

I = 0 π / 2 log ( cos ( x ) ) log ( sin ( x ) ) d x \displaystyle I=\int _{ 0 }^{ \pi /2 }{ \log (\cos (x))\log (\sin (x))dx } =For result, try the first part.

0 π / 2 [ log ( cos ( x ) ) + log ( sin ( x ) ) ] 2 d x = 2 0 π / 2 ( log ( sin ( x ) ) ) 2 d x + 2 I 2 0 π / 2 ( log ( sin ( x ) ) ) 2 d x + 2 I = 0 π / 2 ( log ( sin ( 2 x ) ) ) 2 d x + 0 π / 2 l o g 2 2 d x 2 l o g 2 0 π / 2 log ( sin ( x ) ) d x 2 0 π / 2 ( log ( sin ( x ) ) ) 2 d x + 2 I = 0 π / 2 ( log ( sin ( t ) ) ) 2 d t + 3 π 2 l o g 2 2 0 π / 2 ( log ( sin ( x ) ) ) 2 d x = 3 π 2 l o g 2 2 2 I 0 π / 2 ( log ( sin ( x ) ) ) 2 d x I = 0 π / 2 log ( s i n ( x ) ) log ( t a n ( x ) ) d x = 3 π 2 l o g 2 2 3 I \displaystyle \int _{ 0 }^{ \pi /2 }{ { [\log (\cos (x))+\log (\sin (x)) }]^{ 2 }dx } =2\int _{ 0 }^{ \pi /2 }{ { (\log (\sin (x))) }^{ 2 }dx } +2I\\ \displaystyle \Rightarrow 2\int _{ 0 }^{ \pi /2 }{ { (\log (\sin (x))) }^{ 2 }dx } +2I=\int _{ 0 }^{ \pi /2 }{ { (\log (\sin (2x))) }^{ 2 }dx } +\int _{ 0 }^{ \pi /2 }{ { log }^{ 2 }2\quad dx } -2log2\int _{ 0 }^{ \pi /2 }{ { \log (\sin (x)) }dx } \\ \displaystyle \Rightarrow 2\int _{ 0 }^{ \pi /2 }{ { (\log (\sin (x))) }^{ 2 }dx } +2I=\int _{ 0 }^{ \pi /2 }{ { (\log (\sin (t))) }^{ 2 }dt } +\frac { 3\pi }{ 2 } { log }^{ 2 }2\\ \displaystyle \Rightarrow \int _{ 0 }^{ \pi /2 }{ { (\log (\sin (x))) }^{ 2 }dx } =\frac { 3\pi }{ 2 } { log }^{ 2 }2-2I\\ \displaystyle \Rightarrow \int _{ 0 }^{ \pi /2 }{ { (\log (\sin (x))) }^{ 2 }dx } -I=\int _{ 0 }^{ \pi /2 }{ \log { (sin(x)) } } \log { (tan(x)) } dx=\frac { 3\pi }{ 2 } { log }^{ 2 }2-3I

Put value of I I to get answer.

@Raghav Vaidyanathan , can you please approach a different approach to a problem, you see you are using the result from the first problem, now people who see this solution of yours without solving this problem, simply put this answer in the first part , and it is decreasing the ratings of it.

Or give me the previelage to remove the answer of first problem from your solution, and let the people wanting to see the complete solution have a go at my first part too.

Ronak Agarwal - 6 years, 3 months ago

Log in to reply

This is how solved it, f ( a ) = 0 π / 2 tan a ( x ) 2 f(a) = \int_{0}^{\pi/2} \frac{\tan^a(x)}{2} This problem asks for, f ( 0 ) f''(0) Convert f(a) into beta function, then use reflection formula .

Shivang Jindal - 6 years, 3 months ago

Log in to reply

Yes that's a good approach. Have you studied complex analysis or contour integration or residue theorom etc. Just curious to know.

Ronak Agarwal - 6 years, 3 months ago

Log in to reply

@Ronak Agarwal No , not much. skipping whole real analysis, and study some parts of complex analysis just for solving integration problems doesn't make any sense. I haven't studied these functions properly, like for example, i like calculating integrals using feynmann method(like i applied in this problem), but i don't actually know deeply, that why can i apply it, restrictions, and all that. I infact don;t like integration . You?

Shivang Jindal - 6 years, 3 months ago

I agree with you

Rajdeep Dhingra - 6 years, 3 months ago

You have my permission. Should i do it? Or can you do it yourself?

Raghav Vaidyanathan - 6 years, 3 months ago

That's Good. Nice Presence of mind

Ronak Agarwal - 6 years, 3 months ago

Even I applied the same approach.

Nice question @Ronak Agarwal .

P.S. - What about @megh choksi comment about the question ?

Rajdeep Dhingra - 6 years, 3 months ago

Log in to reply

What comment of megh choksi. Can you please clarify.

Ronak Agarwal - 6 years, 3 months ago

Log in to reply

The one in your note ζ ( 2 ) = π 2 6 \zeta(2) = \frac{\pi^2}{6}

Rajdeep Dhingra - 6 years, 3 months ago

Log in to reply

@Rajdeep Dhingra I mean this question settles that doubt for generalising for general n n similar approach can be used.

Ronak Agarwal - 6 years, 3 months ago
Rajdeep Dhingra
Mar 6, 2015

L e t I = 0 π / 2 log ( sin x ) log ( tan x ) d x N o w I = 0 π / 2 log 2 ( sin x ) d x 0 π / 2 log ( sin x ) log ( cos x ) d x I = 1 2 ( 2 0 π / 2 log 2 ( sin x ) d x 2 0 π / 2 log ( sin x ) log ( cos x ) d x ) I = 0 π / 2 log 2 ( tan x ) d x 2 L e t I 1 = 0 π / 2 tan a x d x 2 Using Beta Integral 0 π / 2 tan a x d x 2 = 1 4 β ( ( a / 2 + 0.5 ) , ( 1 a / 2 0.5 ) ) Using reflection formula 0 π / 2 tan a x d x 2 = π 4 csc ( π a 2 + π 2 ) Differentiating w.r.t a twice and puting a = 0 we get 0 π / 2 log 2 ( tan x ) d x 2 = π 3 16 Let \quad I = \int_{0}^{\pi/2}{\log(\sin{x})\log(\tan{x})dx } \\ Now \quad I = \int_{0}^{\pi/2}{\log^2(\sin{x})dx} - \int_{0}^{\pi/2}{\log(\sin{x}) \log(\cos{x})dx} \\ I = \frac{1}{2} \left(2 \int_{0}^{\pi/2}{\log^2(\sin{x})dx} - 2 \int_{0}^{\pi/2}{\log(\sin{x}) \log(\cos{x})dx} \right) \\ I = \int_{0}^{\pi/2}{\frac{\log^2(\tan{x})dx}{2}} \\ Let \quad I_1 =\int_{0}^{\pi/2}{\frac{\tan^a{x}dx}{2}} \\ \text{Using Beta Integral} \\\int_{0}^{\pi/2}{\frac{\tan^a{x}dx}{2}} = \frac{1}{4} \beta{((a/2 + 0.5),(1 - a/2 - 0.5))} \\ \text{Using reflection formula} \\ \int_{0}^{\pi/2}{\frac{\tan^a{x}dx}{2}} = \frac{\pi}{4}\csc{\left(\frac{\pi a}{2} + \frac{\pi}{2}\right)} \\ \text{Differentiating w.r.t a twice and puting a = 0 we get } \\ \int_{0}^{\pi/2}{\frac{\log^2(\tan{x})dx}{2}} = \frac{\pi^3}{16} Thanks to Shivang Jindal for pointing in right direction.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...