Plenty of a

Algebra Level 2

a a 2 + 1 = 1 3 , a 3 a 6 + a 5 + a 4 + a 3 + a 2 + a + 1 = ? \large \frac a{a^2+1} = \frac 1 3, \ \ \ \ \ \frac {a^3}{a^6+a^5+a^4+a^3+a^2+a+1} = \ ?

1 29 \frac 1 {29} 1 33 \frac 1 {33} 1 36 \frac 1 {36} 1 25 \frac 1 {25}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

10 solutions

Otto Bretscher
Apr 29, 2015

For ease of writing, we find the reciprocal, Σ = a 3 + a 2 + a + 1 + 1 a + 1 a 2 + 1 a 3 \Sigma=a^3+a^2+a+1+\frac{1}{a}+\frac{1}{a^2}+\frac{1}{a^3} . We are told that a 2 + 1 = 3 a a^2+1=3a , or, a + 1 a = 3 a+\frac{1}{a}=3 (I). Squaring both sides of (I) gives a 2 + 2 + 1 a 2 = 9 a^2+2+\frac{1}{a^2}=9 , or a 2 + 1 a 2 = 7 a^2+\frac{1}{a^2}=7 . Cubing both sides of (I) gives a 3 + 3 a + 3 a + 1 a 3 = 27 a^3+3a+\frac{3}{a}+\frac{1}{a^3}=27 , or a 3 + 1 a 3 = 18 a^3+\frac{1}{a^3}=18 . Adding it all up, we find that Σ = 18 + 7 + 3 + 1 = 29 \Sigma=18+7+3+1=29 , and our answer is 1 29 \boxed{\frac{1}{29}} .

Moderator note:

That's the shortcut. Good work! For the sake of variety, can you think of another solution? Hint: Fibonacci numbers.

Indeed, a beautiful connection to the Fibonacci numbers; thanks for bringing that to our attention: a n = a F 2 n F 2 n 2 a^n=aF_{2n}-F_{2n-2} Now the numerator is a 3 = a F 6 F 4 = 8 a 3 a^3=aF_6-F_4=8a-3 and the denominator is 1 + k = 1 6 a k = ( k = 1 6 F 2 k ) a + 1 k = 1 5 F 2 k 1+\sum_{k=1}^{6}{a^k}=\left(\sum_{k=1}^{6}F_{2k}\right)a+1-\sum_{k=1}^{5}F_{2k} = ( F 13 1 ) a + 1 ( F 11 1 ) = 232 a 87 =(F_{13}-1)a+1-(F_{11}-1)=232a-87 The quotient, miraculously, is 8 a 3 232 a 87 = 1 29 \frac{8a-3}{232a-87}=\frac{1}{29} .

Otto Bretscher - 6 years, 1 month ago

Log in to reply

can u please explain it further?

Nithin Nithu - 6 years, 1 month ago

Log in to reply

Most of it is just basic algebra and arithmetic.

Twice I'm using the formula k = 1 n F 2 k \sum_{k=1}^{n}F_{2k} = F 2 n + 1 1 =F_{2n+1}-1 . We can prove this equation by induction. Before you do that, though, you should run some numerical exampes to get a "feel" for the situation.

In the case n = 1 n=1 we see that F 2 = F 3 1 = 1 F_2=F_3-1=1

Now the induction step: k = 1 n + 1 F 2 k = k = 1 n F 2 k + F 2 n + 2 \sum_{k=1}^{n+1}F_{2k}=\sum_{k=1}^{n}F_{2k}+F_{2n+2} = F 2 n + 1 1 + F 2 n + 2 = F 2 n + 3 1 = F 2 ( n + 1 ) + 1 1. =F_{2n+1}-1+F_{2n+2}=F_{2n+3}-1=F_{2(n+1)+1}-1.

The other equation you want to prove by induction is a n = a F 2 n F 2 n 2 a^n=aF_{2n}-F_{2n-2} ... try it yourself!

Otto Bretscher - 6 years, 1 month ago

Log in to reply

@Otto Bretscher According to u what minimum aged student can understand it relevant to class

Suneel Kumar - 5 years, 5 months ago

Log in to reply

@Suneel Kumar My original solution should be accessible to a 7th or 8th grader (I'm going by the Swiss system), as soon as a student has learned the basics of algebraic manipulation.

Otto Bretscher - 5 years, 5 months ago

Log in to reply

@Otto Bretscher what about solution using fibonacci numbers

Suneel Kumar - 5 years, 3 months ago

short cut ..simple

Anu Dev - 6 years, 1 month ago

same solution :D

John Albert Reyes - 6 years, 1 month ago

By far the best solution.

Fabio Bittar - 6 years, 1 month ago

I don't follow how you went from a^3 + 3/a + 1/a^3 = 27 to a^3 + 1/a^3 what implies that 3a + 3/a is 9?

Matthew Agona - 5 years, 5 months ago

Log in to reply

yes that follows from equation (I)

Otto Bretscher - 5 years, 5 months ago

Log in to reply

I meant I don't understand why a^3 + 1/a^3 = 18, though. I follow everything you did except that part. could you please explain a bit?

Matthew Agona - 5 years, 5 months ago

Log in to reply

@Matthew Agona Ok so we have a + 1 a = 3 a+\frac{1}{a}=3 (Equation I)

Cubing equation (I) we find a 3 + 3 a + 3 a + 1 a 3 = 27 a^3+3a+\frac{3}{a}+\frac{1}{a^3}=27 (Equation II)

Now (Equation II) - 3(Equation I) gives a 3 + 1 a 3 = 27 9 = 18 a^3+\frac{1}{a^3}=27-9=18 .

I hope that makes sense.

Otto Bretscher - 5 years, 5 months ago

Log in to reply

@Otto Bretscher ahhhhh, I see it now! thank you

Matthew Agona - 5 years, 5 months ago

I learn a new method of solving the reciprocal. Thank you.

Niranjan Khanderia - 5 years, 5 months ago

From the first equation we have that a 2 + 1 = 3 a a 2 + a + 1 = 4 a . a^{2} + 1 = 3a \Longrightarrow a^{2} + a + 1 = 4a.

So S = a 3 a 6 + a 5 + a 4 + a 3 + a 2 + a + 1 = a 3 a 6 + a 5 + a 4 + a 3 + 4 a = S = \dfrac{a^{3}}{a^{6} + a^{5} + a^{4} + a^{3} + a^{2} + a + 1} = \dfrac{a^{3}}{a^{6} + a^{5} + a^{4} + a^{3} + 4a} =

a 2 a 5 + a 4 + a 3 + a 2 + 4 . \dfrac{a^{2}}{a^{5} + a^{4} + a^{3} + a^{2} + 4}.

Now a 5 + a 4 + a 3 = a 3 ( a 2 + a + 1 ) = a 3 ( 4 a ) = 4 a 4 a^{5} + a^{4} + a^{3} = a^{3}(a^{2} + a + 1) = a^{3}(4a) = 4a^{4} and

a 2 + 4 = ( a 2 + 1 ) + 3 = 3 a + 3. a^{2} + 4 = (a^{2} + 1) + 3 = 3a + 3. So we now have that

S = a 2 4 a 4 + 3 a + 3 . S = \dfrac{a^{2}}{4a^{4} + 3a + 3}.

Now a 4 = ( 3 a 1 ) 2 = 9 a 2 6 a + 1 = 9 ( 3 a 1 ) 6 a + 1 = 21 a 8 , a^{4} = (3a - 1)^{2} = 9a^{2} - 6a + 1 = 9(3a - 1) - 6a + 1 = 21a - 8, and so

4 a 4 + 3 a + 3 = 4 ( 21 a 8 ) + 3 a + 3 = 87 a 29 = 29 ( 3 a 1 ) = 29 a 2 . 4a^{4} + 3a + 3 = 4(21a - 8) + 3a + 3 = 87a - 29 = 29(3a - 1) = 29a^{2}.

So finally S = a 2 29 a 2 = 1 29 . S = \dfrac{a^{2}}{29a^{2}} = \boxed{\dfrac{1}{29}}.

Moderator note:

Good. It would be slightly easier if you reciprocate the fractions.

I greatly liked your first step.

Niranjan Khanderia - 6 years, 1 month ago

Really brilliant!!!

Rifat Ahmed - 5 years, 8 months ago

A really beautiful and elegant solution!

Aårÿañ Dêwâñ - 5 years, 5 months ago

I like this solution.

Vũ Khắc Tuệ - 6 years, 1 month ago

a a 2 + 1 = 1 3 a 2 = 3 a 1.. ( 1 ) a 3 = 3 a 2 a = 8 a 3.. ( 2 ) F r o m ( 1 ) a = 3 1 a , 1 a = 3 a . . ( 3 ) 1 a 2 = 3 a 1 = 8 3 a . . ( 4 ) S o 1 a 3 = 8 a 3 = 21 8 a . . ( 5 ) a 3 a 6 + a 5 + a 4 + a 3 + a 2 + a + 1 = 1 a 3 + a 2 + a + 1 + a 1 + a 2 + a 3 U s i n g ( 1 ) t o ( 5 ) , a 3 + a 2 + a + 1 + a 1 + a 2 + a 3 = a 3 + a 3 + a 2 + a 2 + a + 1 + a 1 = 8 a 3 + 21 8 a + 3 a 1 + 8 3 a + a + 1 a + 3 = 29. a 3 a 6 + a 5 + a 4 + a 3 + a 2 + a + 1 = 1 29 J u s t a n o t h e r a p p r o a c h . \dfrac{a }{a^2+1}=\dfrac 1 3 ~ \implies~a^2=3a-1 ..(1)~\therefore~a^3=3a^2-a=8a-3..(2)\\From~(1)~~a=3-\dfrac 1 a ,~~\therefore \dfrac 1 a =3-a..(3)~~\therefore~\dfrac{ 1}{ a^2}=\dfrac 3 a -1=8-3a ..(4)\\ So~\dfrac {1}{a^3}=\dfrac 8 a -3=21-8a ..(5)\\\dfrac {a^3}{a^6+a^5+a^4+a^3+a^2+a+1} = \dfrac {1}{a^3+a^2+a+1+a^{-1}+a^{-2}+a^{-3}}\\Using~(1)~to~(5), a^3+a^2+a+1+a^{-1}+a^{-2}+a^{-3}\\=a^3+a^{-3}+a^2+a^{-2}+a+1+a^{-1}\\=8a-3+\color{#D61F06}{21}-8a+3a-1+\color{#D61F06}{8}-3a+a+1-a+3=29.\\\therefore~\dfrac {a^3}{a^6+a^5+a^4+a^3+a^2+a+1} =\dfrac 1 {29}\\~~\\Just~~another~~approach.

where does 8a - 3 come from? how does 3a^2 - a = 8a - 3?

Matthew Agona - 5 years, 5 months ago

Log in to reply

B y ( 1 ) , a 2 = 3 a 1 , a 3 = a ( a 2 ) = a ( 3 a 1 ) = 3 a 2 a = 3 ( 3 a 1 ) a = 8 a 3. By ~~(1),~ a^2=3a-1, ~~\therefore ~ a^3=a(a^2)=a(3a-1)=3a^2-a=3(3a-1)-a=8a-3.

Niranjan Khanderia - 5 years, 5 months ago
Curtis Clement
May 1, 2015

A brute force approach would be to show that a = 3 + 5 2 a = \frac{3+\sqrt{5}}{2} from the 1st equation then substitute into the 2nd

Moderator note:

Yes, this works too, but you must be extremely patient and careful with the substitution and simplification.

..and then you have to do it for a = 3 5 2 a=\frac{3-\sqrt{5}}{2} as well.

Otto Bretscher - 6 years, 1 month ago
Amed Lolo
Jan 5, 2016

a^3=(a^5(a+1)+a^3(a+1)+a(a+1)+1)×?=(a+1)×(a^5+a^3+a)+1=(a+1)×(a^5+a×(a^2+1))+1,from given a^2+1=3a,above exp =(a+1)×(a^5+3a^2+)1=(a+1)×a×(a^4+3a)+1=a×(a+1)×((a^2)2+3a)+1=a×(a+1)×((3a-1)^2+3a)+1=a×(a+1)×(9a^2-6a+1+3a)+1=a×(a+1)×(9a^2-3a+1)+1=a×(a+1)×(9×(3a-1)-3a)+1=a×(a+1)×(27a+-9-3a+1)+1=a×(a+1)×(24a-8)+1=a×(a+1)×8×(3a-1)+1=8a×(a+1)×a^2+1=(8a^3×(a+1)+1)×?=a^3 ,so ?=(8×(a+1)+a^-3 )^-1,a^2-3a+1=0,a=1.5+.5√5,substitute in expression by using calculator ?=1÷29######

Prasit Sarapee
Jan 4, 2016

brute force method
a=(3+sqrt(5))/2 or a=(3 - sqrt(5))/2
substitute a into (2) by MS-Excel
solution is 0.034483 =1/29


Tom Engelsman
Oct 31, 2015

Taking the denominator of the latter rational expression, we write the following:

a^6 + a^5 + a^4 + a^3 + a^2 + a + 1 = (a^6 + 3a^4 + 3a^2 + 1) - 2a^4 - 2a^2 + (a^5 + a^3 + a)

or (a^2 + 1)^3 - (2a^2)(a^2 + 1) + a^5 + 2a^3 - a^3 + a;

or (a^2 + 1)^3 - (2a^2)(a^2 + 1) + a(a^2 + 1)^2 - a^3 (i).

Substitution of a^2 + 1 = 3a into (i) will now produce:

a^3 / [(3a)^3 - (2a^2) (3a) + a (3a)^2 - a^3] = a^3 / (27 - 6 + 9 - 1)*a^3 = 1/29.

Noel Lo
May 12, 2015

Excellent problem!!!

For the first equation:

\­[ \large \frac a{a^2+1} = frac 1 3]

we can know that

\­(\a approx 2.618 )

So using that value we can solve the second equation

Krishna Ramesh
Apr 30, 2015

It is given that \­(\frac { { a }^{ 2 }+1 }{ a } =3\­) (just reciprocated the given condition)\­(\longrightarrow I\­)

Cubing both sides, we get \­(\frac { { a }^{ 6 }+3{ a }^{ 4 }+3{ a }^{ 2 }+1 }{ { a }^{ 3 } } =27\­)

\­(\Rightarrow \frac { { a }^{ 6 }+{ 3a }^{ 2 }({ a }^{ 2 }+1)+1 }{ { a }^{ 3 } } =27\­)

\­(\Rightarrow \frac { { a }^{ 6 }+a({ { a }^{ 2 }+1 })^{ 2 }+1 }{ { a }^{ 3 } } =27\­) using equation \­(I\­)

\­(\Rightarrow \frac { { a }^{ 6 }+{ a }^{ 5 }+2{ a }^{ 3 }+a+1 }{ { a }^{ 3 } } =27\­)

\­(\Rightarrow \frac { { a }^{ 6 }+{ a }^{ 5 }+{ a }^{ 3 }+a+1 }{ { a }^{ 3 } } =26\­)

Add \­(\frac { { a }^{ 2 }+1 }{ a }\­) to the LHS and add \­(3\­) to the RHS (Since they are equal)

\­(\Rightarrow \frac { { a }^{ 6 }+{ a }^{ 5 }+{ a }^{ 4 }+{ a }^{ 3 }+{ a }^{ 2 }+a+1 }{ { a }^{ 3 } } =29\­)

Hence required answer is the reciprocal =\­(\boxed { \frac { 1 }{ 29 } }\­)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...