Math Archive 6

Calculus Level 5

Let J n = 0 π / 2 x n cos ( x ) d x \displaystyle \, J_{n}=\int_{0}^{\pi /2 }x^{n}\cos(x) \, dx , where n n is a non-negative integer, and S = n = 2 ( J n n ! + J n 2 ( n 2 ) ! ) S = \sum_{n=2}^{\infty}\left(\dfrac{J_{n}}{n!}+\dfrac{J_{n-2}}{(n-2)!}\right) Find the value of S S up to three decimal places.


Try my set Math Archive .


The answer is 2.239.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 18, 2016

J n = 0 π 2 x n cos x d x By integration by parts = [ x n sin x ] 0 π 2 + n 0 π 2 x n 1 sin x d x = ( π 2 ) n + n [ x n 1 cos x ] 0 π 2 n ( n 1 ) 0 π 2 x n 2 cos x d x = ( π 2 ) n n ( n 1 ) J n 2 J n + n ( n 1 ) J n 2 = ( π 2 ) n J n + n ( n 1 ) J n 2 n ! = ( π 2 ) n n ! J n n ! + J n 2 ( n 2 ) ! = ( π 2 ) n n ! n = 2 ( J n n ! + J n 2 ( n 2 ) ! ) = n = 2 ( π 2 ) n n ! S = n = 0 ( π 2 ) n n ! 1 π 2 = e π 2 1 π 2 = 2.239 \begin{aligned} J_n & = \int_0^\frac{\pi}{2} x^n \cos x \, dx \quad \quad \small \color{#3D99F6}{\text{By integration by parts}} \\ & = \left[x^{n} \sin x \right]_0^\frac{\pi}{2} + n \int_0^\frac{\pi}{2} x^{n-1} \sin x \, dx \\ & = \left(\frac{\pi}{2} \right)^n + n \left[x^{n-1} \cos x \right]_0^\frac{\pi}{2} - n(n-1) \int_0^\frac{\pi}{2} x^{n-2} \cos x \, dx \\ & = \left(\frac{\pi}{2} \right)^n - n(n-1)J_{n-2} \\ \Rightarrow J_n + n(n-1)J_{n-2} & = \left(\frac{\pi}{2} \right)^n \\ \frac{J_n + n(n-1)J_{n-2}}{n!} & = \frac{\left(\frac{\pi}{2} \right)^n}{n!} \\ \frac{J_n}{n!} + \frac{J_{n-2}}{(n-2)!} & = \frac{\left(\frac{\pi}{2} \right)^n}{n!} \\ \sum_{n=2}^\infty \left(\frac{J_n}{n!} + \frac{J_{n-2}}{(n-2)!} \right) & = \sum_{n=2}^\infty \frac{\left(\frac{\pi}{2} \right)^n}{n!} \\ \Rightarrow S & = \sum_{n=\color{#3D99F6}{0}}^\infty \frac{\left(\frac{\pi}{2} \right)^n}{n!} \color{#3D99F6}{- 1 - \frac{\pi}{2}} \\ & = e^\frac{\pi}{2} - 1 - \frac{\pi}{2} \\ & = \boxed{2.239} \end{aligned}

I think I cheat your ideas from your mind.

Aakash Khandelwal - 5 years, 1 month ago

Log in to reply

I don't get what you mean.

Chew-Seong Cheong - 5 years, 1 month ago

Log in to reply

I think he mean to say he did the exact same same way as you did!! Isn't it @Aakash Khandelwal

Rishabh Jain - 5 years, 1 month ago

Log in to reply

@Rishabh Jain Exactly. People would get bored reading the same comment , ''same solution!!''. You must also have read at many places, I bet. @RishabhCool

Aakash Khandelwal - 5 years, 1 month ago

Log in to reply

@Aakash Khandelwal Exactly.... :-)

Rishabh Jain - 5 years, 1 month ago

@Aakash Khandelwal Okay, I get it.

Chew-Seong Cheong - 5 years, 1 month ago
Humberto Bento
Apr 21, 2016

Just an hint: First do the sum, then do the integral. It's much easier!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...