Mathematica

Algebra Level 3

x + 1 + x 1 x + 1 x 1 = 4 x 1 2 \frac { \sqrt { x+1 } +\sqrt { x-1 } }{ \sqrt { x+1 } -\sqrt { x-1 } } =\frac { 4x-1 }{ 2 }

Find the value of x x satisfying the above equation. Enter your answer rounded to two decimal places.


The answer is 1.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tapas Mazumdar
Mar 23, 2017

x + 1 + x 1 x + 1 x 1 = 4 x 1 2 x + 1 + x 1 x + 1 x 1 x + 1 + x 1 x + 1 + x 1 = 4 x 1 2 2 x + 2 x 2 1 2 = 4 x 1 2 2 x + 2 x 2 1 = 4 x 1 2 x 2 1 = 2 x 1 ( 2 x 2 1 ) 2 = ( 2 x 1 ) 2 4 x 2 4 = 4 x 2 4 x + 1 4 x = 5 x = 5 4 = 1.25 \dfrac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}} = \dfrac{4x-1}{2} \\ \implies \dfrac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}} \cdot \dfrac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}+\sqrt{x-1}} = \dfrac{4x-1}{2} \\ \implies \dfrac{2x + 2 \sqrt{x^2-1}}{2} = \dfrac{4x-1}{2} \\ \implies 2x + 2 \sqrt{x^2-1} = 4x-1 \\ \implies 2 \sqrt{x^2-1} = 2x-1 \\ \implies {\left( 2 \sqrt{x^2-1} \right)}^2 = {(2x-1)}^2 \\ \implies 4x^2 - 4 = 4x^2 - 4x +1 \\ \implies 4x = 5 \\ \implies x = \dfrac 54 = \boxed{1.25}

Syed Baqir
Aug 25, 2015

using C o m p e n d e n d o a n d D i v i d e n d o W e h a v e , x + 1 x 1 = 4 x + 1 4 x 3 x + 1 x 1 = ( 4 x + 1 ) 2 ( 4 x 3 ) 2 x + 1 x 1 = 16 x 2 + 1 + 8 x 16 x 2 + 9 24 x A g a i n C o m p e n d e n d o a n d D i v i d e n d o , M u l t i p l y i n g 2 a n d d i v i d i n g 2 2 2 x 1 = 32 x 2 16 x + 10 32 x 8 16 x 2 4 x = 16 x 2 8 x + 5 x = 5 4 \quad Compendendo\quad and\quad Dividendo\quad \\ We\quad have,\quad \\ \frac { \sqrt { x+1 } }{ \sqrt { x-1 } } =\frac { 4x+1 }{ 4x-3 } \\ \therefore \quad \frac { x+1 }{ x-1 } =\frac { (4x+1)^{ 2 } }{ { (4x-3) }^{ 2 } } \Longrightarrow \quad \frac { x+1 }{ x-1 } =\frac { 16{ x }^{ 2 }+1+8x }{ 16{ x }^{ 2 }+9-24x } \\ Again\quad Compendendo\quad and\quad Dividendo,\\ Multiplying\quad 2\quad and\quad dividing\quad 2\\ \frac { 2 }{ 2 } *\frac { x }{ 1 } =\frac { 32{ x }^{ 2 }-16x+10 }{ 32x-8 } \Longrightarrow 16{ x }^{ 2 }-4x\quad =\quad 16{ x }^{ 2 }-8x\quad +5\\ \therefore \quad x\quad =\quad \frac { 5 }{ 4 }

C o m p e n d e n d o a n d D i v i d e n d o t h e o r e m i s a s f o l l o w s I f y o u h a v e : a : b = c : d t h e n , a + b : a b = c + d : c d \quad Compendendo\quad and\quad Dividendo\quad theorem\quad is\quad as\quad follows\\ If\quad you\quad have:\quad a:b=c:d\\ then,\quad \quad \quad \quad \quad \quad \quad \quad a+b:a-b=c+d:c-d\quad

Syed Baqir - 5 years, 9 months ago

Log in to reply

Can you prove that theorem?

Ben Habeahan - 5 years, 9 months ago

Log in to reply

a b = c d = k a = b k , c = d k a + b a b = c + d c d b ( k + 1 ) b ( k 1 ) = d ( k + 1 ) d ( k 1 ) ( k + 1 ) ( k 1 ) = ( k + 1 ) ( k 1 ) 1 = 1 H e n c e P r o v e d \frac { a }{ b } =\frac { c }{ d } =k\\ a\quad =\quad bk\quad ,\quad c\quad =\quad dk\\ \frac { a+b }{ a-b } =\frac { c+d }{ c-d } \Longrightarrow \frac { b(k+1) }{ b(k-1) } =\frac { d(k+1) }{ d(k-1) } \\ (k+1)(k-1)\quad =\quad (k+1)(k-1)\\ 1\quad =\quad 1\\ Hence\quad Proved

Syed Baqir - 5 years, 9 months ago

Log in to reply

@Syed Baqir Owww..thanks for the prove

Ben Habeahan - 5 years, 9 months ago

Log in to reply

@Ben Habeahan np , I am glad it helped !

Syed Baqir - 5 years, 9 months ago

@Ben Habeahan Check now I have edited Latex

Syed Baqir - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...