Max and min

Geometry Level 4

cos 2 θ 6 sin θ cos θ + 3 sin 2 θ + 2 \cos^2\theta - 6\sin\theta\cos\theta+3\sin^2\theta +2

Let θ \theta be a real number. Find the sum of the maximum and minimum values of the expression above.


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 16, 2016

X = cos 2 θ 6 sin θ cos θ + 3 sin 2 θ + 2 sin 2 θ + cos 2 θ = 1 = 1 6 sin θ cos θ + 2 sin 2 θ + 2 = 3 3 ( 2 sin θ cos θ ) + 2 sin 2 θ 1 + 1 = 4 3 sin ( 2 θ ) cos ( 2 θ ) = 4 10 ( 3 10 sin ( 2 θ ) 1 10 cos ( 2 θ ) ) = 4 10 ( sin ( 2 θ ) cos ϕ + cos ( 2 θ ) sin ϕ ) Let sin ϕ = 1 10 , cos ϕ = 3 10 ϕ = tan 1 1 3 X = 4 10 sin ( 2 θ + tan 1 1 3 ) X m a x = 4 10 ( 1 ) = 4 + 10 X m i n = 4 10 ( 1 ) = 4 10 \begin{aligned} X & = \color{#3D99F6}{\cos^2 \theta} - 6 \sin \theta \cos \theta + \color{#3D99F6}{3 \sin^2 \theta} + 2 \quad \quad \small \color{#3D99F6}{\sin^2 \theta + \cos^2 \theta = 1} \\ & = \color{#3D99F6}{1} - 6 \sin \theta \cos \theta + \color{#3D99F6}{2 \sin^2 \theta} + 2 \\ & = 3 - 3 (2 \sin \theta \cos \theta) + 2 \sin^2 \theta - 1 + 1 \\ & = 4 - 3 \sin (2 \theta) - \cos (2 \theta) \\ & = 4 - \sqrt{10} \left( \frac{3}{\sqrt{10}} \sin (2 \theta) - \frac{1}{\sqrt{10}} \cos (2 \theta) \right) \\ & = 4 - \sqrt{10} \left(\sin (2 \theta) \cos \phi + \cos (2 \theta) \sin \phi \right) \quad \quad \small \color{#3D99F6}{\text{Let }\sin \phi = \frac{1}{\sqrt{10}}, \ \cos \phi = \frac{3}{\sqrt{10}} \implies \phi = \tan^{-1} \frac{1}{3}} \\ \implies X & = 4 - \sqrt{10} \sin \left( 2 \theta + \tan^{-1} \frac{1}{3} \right) \\ X_{max} & = 4 - \sqrt{10} \left(-1 \right) = 4 + \sqrt{10} \\ X_{min} & = 4 - \sqrt{10} \left(1 \right) = 4 - \sqrt{10} \end{aligned}

X m a x + X m i n = 8 \implies X_{max} + X_{min} = \boxed{8}

This time I got it perfectly;)

Rakshit Joshi - 5 years, 1 month ago

Log in to reply

It is the same trick.

Chew-Seong Cheong - 5 years, 1 month ago

Log in to reply

well you could also use + a 2 + b 2 +-\sqrt{a^2+b^2} i.e + 3 2 + 2 2 +-\sqrt{-3^2+-2^2} = + 10 +-\sqrt{10} .

then max is 4 + 10 4+\sqrt{10} and min. is 4 10 4-\sqrt{10} instead of taking t a n 1 tan^-1 ;) isn't it

Rakshit Joshi - 5 years ago

Since we know that the minimum value of sin and cos is -1 and maximum value of sin and cos is 1

If we put sinx=cosx=-1 in the equation we get 1-6+3+2=0

And sinx=cosx=1 we get 1-6+3+2=0

Sum of minimum and maximum value is 0

Sid Rana - 5 years ago

Log in to reply

When sin x = 1 \sin x = -1 , cos x = 0 \cos x = 0 and when cos x = 1 \cos x = -1 , sin x = 0 \sin x = 0 . It is impossible to have sin x = cos x = 1 \sin x = \cos x = -1 . sin x \sin x and cos x \cos x are not independent. In fact, cos x = sin ( π / 2 x ) \cos x = \sin (\pi/2 -x) or sin x = cos ( π / 2 x ) \sin x = \cos (\pi/2 -x) . We can never have sin x = sin ( π / 2 x ) = 1 \sin x = \sin (\pi/2 - x) = -1 . sin x = cos x = ± 1 / 2 \sin x = \cos x = \pm 1/\sqrt{2} , when x = ( 2 k + 1 / 4 ) π x = (2k + 1/4) \pi , where k k is an integer.

Chew-Seong Cheong - 5 years ago

Log in to reply

Thanks for correcting me

Can you solve it the way I wantedto do

Sid Rana - 5 years ago

Log in to reply

@Sid Rana No, your method is not useful. Because sin x \sin x and cos x \cos x do not have maximum and minimum together. That is why we have to change the form with sin x \sin x and cos x \cos x to only sin x \sin x or only cos x \cos x as I have done.

Chew-Seong Cheong - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...