x + y + z x y + y z + z x = 6 3 x + 3 y + 3 z − 6 5
Let x , y , z be positive reals satisfying the relation above.
Find the maximum value of x + y + z
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I love all inequalities :)
You have applied the CS inequality incorrectly.By CS inequality we have ( x + y + z ) 2 < o r = 3 ( x 2 + y 2 + z 2 ) .So,we should get that 65 is the maximum value and not the minimum.
Log in to reply
So how to find the minimum then? Any idea??
Log in to reply
Sorry typo, fixed.
Log in to reply
@Harsh Shrivastava – You must also change the title then.
x + y + z x y + y z + z x = 6 3 ( x + y + z ) − 6 5 ⇒ 2 ( x + y + z ) ( x + y + z ) 2 − ( x 2 + y 2 + z 2 ) = 6 3 ( x + y + z ) − 6 5 ⇒ 2 ( x + y + z ) 2 − ( x 2 + y 2 + z 2 ) = ( x + y + z ) 6 3 ( x + y + z ) − 6 5 ⇒ ( x + y + z ) 2 − ( x 2 + y 2 + z 2 ) = ( x + y + z ) 2 − 3 6 5 ( x + y + z ) ⇒ 3 6 5 ( x + y + z ) = x 2 + y 2 + z 2 . Then by the QM-AM inequality, we have x + y + z ≤ 3 ( x 2 + y 2 + z 2 ) = 6 5 ( x + y + z ) ⇒ ( x + y + z ) 2 ≤ 6 5 ( x + y + z ) . Thus, x + y + z ≤ 6 5 and equality is achieved when x = y = z = 3 6 5 .
Problem Loading...
Note Loading...
Set Loading...
I think you love CS inequality too much ;-P.... Isn't it @Harsh Shrivastava ?
Equation can be rewritten as: 6 ( x y + y z + z x ) = 3 ( x + y + z ) 2 − 6 5 ( x + y + z )
( Using ( c y c ∑ x ) 2 = c y c ∑ x 2 + 2 c y c ∑ x y )
We get-
3 ( x 2 + y 2 + z 2 ) = 6 5 ( x + y + z ) . . . . . ( 1 )
Now applying Cauchy-Schwarz-Inequality :
( x + y + z ) 2 ≤ 3 ( x 2 + y 2 + z 2 ) = 6 5 ( x + y + z ) Using ( 1 )
⟹ ( x + y + z ) ( ( x + y + z ) − 6 5 ) ≤ 0
x + y + z ≤ 6 5
Since x + y + z > 0 .
Equality occurs when- x=y=z = 3 6 5