Maximizing Some Sum

Algebra Level 4

x y + y z + z x x + y + z = 3 x + 3 y + 3 z 65 6 \dfrac{xy+yz+zx}{x+y+z} = \dfrac{3x+3y+3z-65}{6}

Let x , y , z x,y,z be positive reals satisfying the relation above.

Find the maximum value of x + y + z x+y+z


The answer is 65.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Mar 26, 2016

I think you love CS inequality too much ;-P.... Isn't it @Harsh Shrivastava ?

Equation can be rewritten as: 6 ( x y + y z + z x ) = 3 ( x + y + z ) 2 65 ( x + y + z ) 6(xy+yz+zx)=3(x+y+z)^2-65(x+y+z)

( Using ( c y c x ) 2 = c y c x 2 + 2 c y c x y ) \small{(\color{#D61F06}{\text{Using } \left(\sum_{cyc} x\right)^2=\sum_{cyc}x^2+2\sum_{cyc}xy })}

We get-

3 ( x 2 + y 2 + z 2 ) = 65 ( x + y + z ) . . . . . ( 1 ) 3(x^2+y^2+z^2)=65(x+y+z)\color{#20A900}{.....(1)}

Now applying Cauchy-Schwarz-Inequality :

( x + y + z ) 2 3 ( x 2 + y 2 + z 2 ) = 65 ( x + y + z ) Using ( 1 ) \large{\begin{aligned}(x+y+z)^2&\leq 3(x^2+y^2+z^2)\\&=65(x+y+z)~~~\color{#20A900}{\small{\text{Using } (1)}}\end{aligned}}

( x + y + z ) ( ( x + y + z ) 65 ) 0 \implies (x+y+z)((x+y+z)-65)\leq 0

x + y + z 65 \Large \boxed{x+y+z\leq 65}

Since x + y + z > 0 x+y+z>0 .


Equality occurs when- x=y=z = 65 3 \textbf{x=y=z}=\dfrac{65}{3}

I love all inequalities :)

Harsh Shrivastava - 5 years, 2 months ago

You have applied the CS inequality incorrectly.By CS inequality we have ( x + y + z ) 2 (x+y+z)^2 < o r = < or= 3 ( x 2 + y 2 + z 2 ) 3(x^2+y^2+z^2) .So,we should get that 65 is the maximum value and not the minimum.

Indraneel Mukhopadhyaya - 5 years, 2 months ago

Log in to reply

So how to find the minimum then? Any idea??

Rishabh Jain - 5 years, 2 months ago

Log in to reply

Sorry typo, fixed.

Harsh Shrivastava - 5 years, 2 months ago

Log in to reply

@Harsh Shrivastava You must also change the title then.

Indraneel Mukhopadhyaya - 5 years, 2 months ago
James Wilson
Jan 22, 2018

x y + y z + z x x + y + z = 3 ( x + y + z ) 65 6 ( x + y + z ) 2 ( x 2 + y 2 + z 2 ) 2 ( x + y + z ) = 3 ( x + y + z ) 65 6 ( x + y + z ) 2 ( x 2 + y 2 + z 2 ) 2 = ( x + y + z ) 3 ( x + y + z ) 65 6 \frac{xy+yz+zx}{x+y+z}=\frac{3(x+y+z)-65}{6}\Rightarrow \frac{(x+y+z)^2-(x^2+y^2+z^2)}{2(x+y+z)}=\frac{3(x+y+z)-65}{6}\Rightarrow \frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}=(x+y+z)\frac{3(x+y+z)-65}{6} ( x + y + z ) 2 ( x 2 + y 2 + z 2 ) = ( x + y + z ) 2 65 3 ( x + y + z ) 65 3 ( x + y + z ) = x 2 + y 2 + z 2 \Rightarrow (x+y+z)^2-(x^2+y^2+z^2)=(x+y+z)^2-\frac{65}{3}(x+y+z)\Rightarrow \frac{65}{3}(x+y+z)=x^2+y^2+z^2 . Then by the QM-AM inequality, we have x + y + z 3 ( x 2 + y 2 + z 2 ) = 65 ( x + y + z ) ( x + y + z ) 2 65 ( x + y + z ) x+y+z\leq\sqrt{3(x^2+y^2+z^2)}=\sqrt{65(x+y+z)} \Rightarrow (x+y+z)^2\leq 65(x+y+z) . Thus, x + y + z 65 x+y+z\leq 65 and equality is achieved when x = y = z = 65 3 x=y=z=\frac{65}{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...