Maximum Manipulation

Algebra Level 5

If x x and y y are non-zero reals satisfying x 2 + y 2 = x 2 y 2 x^{2} + y^{2} = x^{2}y^{2} , then what is the maximum value of the expression below?

5 x + 12 y + 7 x y x y \frac{5x + 12y + 7xy}{xy}


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Deepanshu Gupta
Dec 7, 2014

For non geometric solution :

1 x 2 + 1 y 2 = 1 ( x , y 0 ) \cfrac { 1 }{ { x }^{ 2 } } +\cfrac { 1 }{ { y }^{ 2 } } \quad =\quad 1\quad \quad (\quad \because \quad x\quad ,\quad y\quad \neq \quad 0\quad ) .

x = sec θ & y = csc θ x\quad =\quad \sec { \theta } \quad \quad \& \quad \quad y\quad =\quad \csc { \theta } .

E = 5 x + 12 y + 7 x y x y E = 5 y + 12 x + 7 E = 5 sin θ + 12 cos θ + 7 E m a x = 13 + 7 = 20 E\quad =\cfrac { 5x\quad +\quad 12y\quad +\quad 7xy }{ xy } \quad \\ \\ E\quad =\quad \frac { 5 }{ y } +\frac { 12 }{ x } \quad +\quad 7\\ \\ E\quad =\quad 5\sin { \theta } \quad +\quad 12\cos { \theta } \quad +\quad 7\\ \\ { E }_{ max }\quad =\quad 13\quad +\quad 7\quad =\quad 20 .


But I believe There must be an geometric Solution ! So I'am working on it when I got correct then I will Surely Post it !


Geometric solution: Triangle Triangle

Let denote these by standard notation of Triangle ABC

x = a , y = b , x y = c x\quad =\quad a\quad ,\quad y\quad =\quad b\quad ,\quad xy\quad =\quad c .

So E = 5 a + 12 b + 7 c c E = 5 sin A + 12 sin B + 7 sin C sin C E = 5 sin A + 12 sin B + 7 1 ( sin C = 1 ) E m a x = 20 E\quad =\cfrac { 5a\quad +\quad 12b\quad +\quad 7c }{ c } \quad \\ E\quad =\quad \cfrac { 5\sin { A } \quad +\quad 12\sin { B } \quad +\quad 7\sin { C } }{ \sin { C } } \\ \\ E\quad =\quad \cfrac { 5\sin { A } \quad +\quad 12\sin { B } \quad +\quad 7 }{ 1 } \quad \quad (\because \quad \sin { C } \quad =\quad 1\quad )\\ \\ { E }_{ max }=\quad 20 .

Megh is that x and y are positive reals ?

If So , Then I have another method !

Triangle Triangle

Let denote these by standard notation of Triangle ABC

x = a , y = b , x y = c x\quad =\quad a\quad ,\quad y\quad =\quad b\quad ,\quad xy\quad =\quad c .

So E = 5 a + 12 b + 7 c c E = 5 sin A + 12 sin B + 7 sin C sin C E = 5 sin A + 12 sin B + 7 1 ( sin C = 1 ) E m a x = 20 E\quad =\cfrac { 5a\quad +\quad 12b\quad +\quad 7c }{ c } \quad \\ E\quad =\quad \cfrac { 5\sin { A } \quad +\quad 12\sin { B } \quad +\quad 7\sin { C } }{ \sin { C } } \\ \\ E\quad =\quad \cfrac { 5\sin { A } \quad +\quad 12\sin { B } \quad +\quad 7 }{ 1 } \quad \quad (\because \quad \sin { C } \quad =\quad 1\quad )\\ \\ { E }_{ max }=\quad 20 .

Deepanshu Gupta - 6 years, 6 months ago

Log in to reply

I took the shameless route and just used calculus. Both your solutions are really nice.

Jake Lai - 6 years, 6 months ago

Log in to reply

calculus is not a shame

Vincent Miller Moral - 5 years, 9 months ago

Wow, both approaches are nice!

They are (arguably) equivalent, but I like how they have different motivations. One as "Pythagorean Formula", and another as "Trigonometric Pythagorean Identity"

Calvin Lin Staff - 6 years, 6 months ago

Log in to reply

I solved this q by algebraic method but still I have a doubt..if we put x=y=0(or h) it satisfies 1st eqn...h being very small no.
If we substitute value h in req. Expression we get 17h+7h^2÷h^2 as infinite..

Sachin Arora - 6 years, 6 months ago

Log in to reply

@Sachin Arora Note that x 2 + y 2 = x 2 y 2 x^2 + y^2 = x^2 y ^2 is not satisfied in a neighborhood of ( 0 , 0 ) (0,0) , other than the point itself. In fact, we can show that other than the origin, we must have x , y 1 |x|, |y| \geq 1 .

I have edited in the condition that x , y 0 x, y \neq 0 , which is a reasonable assumption given that they appear in the denominator.

In similar situations where there are solutions near ( 0 , 0 ) (0,0) , the right approach would be to consider the limiting value.

Calvin Lin Staff - 6 years, 6 months ago

Log in to reply

@Calvin Lin Thanks.. I want to know that why h(small quantity) is not solution of 1st eqn. Isn't 2h^2=h^4=0 (Sorry, I may sound dumb)

Sachin Arora - 6 years, 6 months ago

Log in to reply

@Sachin Arora For h 0 h \neq 0 , we do not have 2 h 2 = h 4 ( = 0 ) 2 h^2 = h^4 ( = 0 ) .

Making y y the subject of the equation, we see that y 2 = x 2 x 2 1 y^2 = \frac{ x^2 } { x^2 - 1 } . Since the LHS is always positive, this means that the RHS is always positive. In particular, since x 2 > 0 x^2 > 0 (with x 0 x \neq 0 , we must have x 2 1 > 0 x ^2 - 1 > 0 . Hence, x > 1 |x| > 1 .

Calvin Lin Staff - 6 years, 6 months ago

I loved both your approaches towards the problem, Deepanshu.

Also, I would appreciate Megh for posting such a nice problem.

Ninad Akolekar - 6 years, 6 months ago

I think your diagram is mislabeled. If the sin C is 1, C must be the right angle. Further, in standard notation, b is opposite angle B and c is opposite angle C.

Tom Capizzi - 5 years ago

Hi, why is the max of 5 sin theta + 12 cos theta, 13?

Kim Gee - 5 years, 5 months ago

Log in to reply

It's simple. Apply Cauchy inequality to get

( 5 sin θ + 12 cos θ ) 2 ( 5 2 + 12 2 ) ( s i n 2 θ + c o s 2 θ ) \large\ { \left( 5\sin { \theta + 12\cos { \theta } } \right) }^{ 2 } \le \left( { 5 }^{ 2 } + { 12 }^{ 2 } \right) \left( { sin }^{ 2 }\theta + { cos }^{ 2 }\theta \right) .

Forcing the maximum to be 13 13 .

Priyanshu Mishra - 5 years, 1 month ago

Simple trigonometry. Since 5 and 12 are the legs of a right triangle with hypotenuse 13, we can write 5 = 13 cos phi and 12 = 13 sin phi. Then the expression becomes 13 cos phi sin theta + 13 sin phi cos theta = 13 (cos phi sin theta + sin phi cos theta) = 13 sin (phi + theta). This is clearly maximum when phi + theta = pi/2, and sin = 1.

Tom Capizzi - 5 years ago

I got the exact same solution.

subh mandal - 4 years, 5 months ago

if x , y > 0. x,y>0 . by cauchy : 13 x y = ( 25 + 144 ) ( x ² + y ² ) 5 x + 12 y 13xy=\sqrt{(25+144)(x²+y²)} \geq 5x+12y so: 5 x + 12 y + 7 x y x y = 5 x + 12 y x y + 7 13 x y x y + 7 = 20 \frac{5x+12y+7xy}{xy}=\frac{5x+12y}{xy}+7\leq \frac{13xy}{xy}+7=20

i too used cauchy :D

Aritra Jana - 6 years, 6 months ago

I used Cauchy's as well, but I got ( ( 5 ) 1 y + ( 12 ) 1 x + ( 1 ) 7 ) 2 ( 5 2 + 1 2 2 + 1 2 ) ( 1 x 2 + 1 y 2 + 7 2 ) ((5)\frac{1}{y}+(12)\frac{1}{x}+(1)7)^2\leq (5^2+12^2+1^2)(\frac{1}{x^2}+\frac{1}{y^2}+7^2)

( ( 5 ) 1 y + ( 12 ) 1 x + ( 1 ) 7 ) 2 ( 25 + 144 + 1 ) ( 1 + 49 ) \Rightarrow ((5)\frac{1}{y}+(12)\frac{1}{x}+(1)7)^2\leq(25+144+1)(1+49)

( ( 5 ) 1 y + ( 12 ) 1 x + ( 1 ) 7 ) 10 85 \Rightarrow ((5)\frac{1}{y}+(12)\frac{1}{x}+(1)7)\leq 10\sqrt{85}

What did I do wrong?

Trevor Arashiro - 6 years, 6 months ago

Log in to reply

You have merely shown that 10 85 92 10 \sqrt{ 85 } \approx 92 is an upper bound. For it to be the maximum, you need to find the least upper bound .

One way of showing that it is the least upper bound, is to check the equality conditions. In this case, we will require x 5 = y 12 = x y 7 \frac{x}{5} = \frac{ y}{12} = \frac{ xy } { 7 } . However, this does not agree with the original condition.

Calvin Lin Staff - 6 years, 6 months ago

x^2 + y^2 is greater than equal to x^2y^2 and as it is equal to x^2 + y^2 then the solution for the maximum value should be x = y = 2^(0.5)

Sayantan Saha - 4 years, 9 months ago
Mehul Chaturvedi
Dec 14, 2014

Q u e s t i o n c a n b e w r i t t e n a s ( 5 y + 12 x + 7 ) W e w o u l d o m m i t 7 a s i t s a c o n s t a n t A p p l y i n g c a u c h y s i n e q u a l i t y ( 5 y + 12 x ) 2 ( 25 + 144 ) ( x 2 + y 2 x 2 y 2 ) ( 5 y + 12 x ) 13 n o w a d d i n g 7 ( 5 y + 12 x + 7 ) 20 Question\quad can\quad be\quad written\quad as\\ \left( \frac { 5 }{ y } +\frac { 12 }{ x } +7 \right) \\ We\quad would\quad ommit\quad 7\quad as\quad its\quad a\quad constant\\ \\ Applying\quad cauchy's\quad inequality\\ { \left( \frac { 5 }{ y } +\frac { 12 }{ x } \right) }^{ 2 }\le \left( 25+144 \right) (\frac { x^{ 2 }+{ y }^{ 2 } }{ x^{ 2 }y^{ 2 } } )\\ { \left( \frac { 5 }{ y } +\frac { 12 }{ x } \right) }\le 13\\ now\quad adding\quad 7\\ \because { \left( \frac { 5 }{ y } +\frac { 12 }{ x } +7 \right) }\le 20

can you please find out for which values of x and y this is true?

Sayantan Saha - 4 years, 9 months ago
David Nasr
Dec 9, 2014

A calculus approach: (little longer)

From the equation x 2 + y 2 = x 2 y 2 x^2+y^2=x^2y^2 , we can get that y = x x 2 1 y= \frac {x}{ \sqrt {x^2-1}} . Solving with the other equation we get 5 x + 12 x x 2 1 + 7 x 2 x 2 1 x 2 x 2 1 \frac {5x+12 \frac {x}{ \sqrt {x^2-1}}+7 \frac {x^2}{ \sqrt {x^2-1}}}{ \frac {x^2}{ \sqrt {x^2-1}}}

This (function) can be simplified to:

5 x x 2 1 + 12 x + 7 \frac {5}{x} \sqrt {x^2-1}+ \frac {12}{x}+7

Knowing that the derivative of the function will be equal to zero at its maximum value, after differentiation and some simplifications we get:

12 x 2 1 = 5 12 \sqrt {x^2-1}=5

Then: x = 12 13 x= \frac {12}{13} Then, the maximum value of the function will be at x = 12 13 x= \frac {12}{13} which is 20 \boxed {20}

Very good and solid approach

Niaz Ghumro - 6 years, 6 months ago

This method is general.

Lu Chee Ket - 5 years, 8 months ago

This is how I solved it as well. I wish I had seen the sec/csc shortcut but anyway I got the correct answer which was 20. I'm afraid though that David Nasr made a slight transcription error when entering his solution. x x is actually equal to 13 12 \frac {13}{12} not 12 13 \frac {12} {13} which is clearly incorrect as it would yield an imaginary result in the expression x 2 1 \sqrt {x^2-1} .

Sridev Humphreys - 5 years, 1 month ago

But if x = 12/13, x^2 - 1 is negative?!?!

Tom Capizzi - 5 years ago

Didn't know Cauchy! So, I had to use this method too.

Atomsky Jahid - 4 years, 11 months ago

Substituting for sine and cosine would solve the problem. From x 2 + y 2 = X 2 Y 2 x^2 + y^2 = X^2 Y^2 , we try to let x 2 y 2 x^2 y^2 be the square of radius. And x x and y y are now R c o s ( θ ) R cos( \theta ) and R s i n ( θ ) R sin( \theta ) respectively. Substituting, we obtain ( 5 R c o s ( θ ) + 12 R s i n ( θ ) + 7 R ) / R (5 R cos( \theta ) + 12 R sin( \theta ) + 7 R ) / R , yielding 5 c o s ( θ ) + 12 s i n ( θ ) + 7 5 cos( \theta ) + 12 sin( \theta ) + 7 . From Cauchy, we get the maximum of 5 c o s ( θ ) + 12 s i n ( θ ) 5 cos( \theta ) + 12 sin( \theta ) , which is square root of [ ( 5 2 + 1 2 2 ) ( c o s 2 ( θ ) + s i n 2 ( θ ) ) ] [( 5^2+12^2)( cos^2 ( \theta ) + sin^2 ( \theta ) )] . Summing up, we get 13 + 7 = 20. 13+7=20.

Hung Woei Neoh
May 8, 2016

Lagrange Multiplier's Method:

Let f ( x , y ) = 5 x + 12 y + 7 x y x y = 5 y + 12 x + 7 f(x,y) = \dfrac{5x+12y+7xy}{xy} = \dfrac{5}{y} + \dfrac{12}{x} + 7

The partial derivatives:

f x = 12 x 2 f y = 5 y 2 f_x = -\dfrac{12}{x^2} \quad\quad f_y = -\dfrac{5}{y^2}

Let g ( x , y ) = x 2 + y 2 x 2 y 2 g(x,y) = x^2+y^2 - x^2y^2

The partial derivatives:

g x = 2 x 2 x y 2 g y = 2 y 2 x 2 y g_x = 2x - 2xy^2 \quad\quad g_y = 2y - 2x^2y

Now, we can equate them:

12 x 2 = λ ( 2 x 2 x y 2 ) -\dfrac{12}{x^2} = \lambda (2x - 2xy^2) \implies Eq. (1)

5 y 2 = λ ( 2 y 2 x 2 y ) -\dfrac{5}{y^2} = \lambda (2y - 2x^2y) \implies Eq. (2)

Plus the original condition:

x 2 + y 2 = x 2 y 2 x^2+y^2 = x^2y^2 \implies Eq. (3)

Now, Eq. (1) ÷ \div Eq. (2):

( 12 x 2 ) ( 5 y 2 ) = λ ( 2 x 2 x y 2 ) λ ( 2 y 2 x 2 y ) 12 y 2 5 x 2 = 2 x ( 1 y 2 ) 2 y ( 1 x 2 ) 12 y 3 ( 1 x 2 ) = 5 x 3 ( 1 y 2 ) \dfrac{\left(-\dfrac{12}{x^2} \right)}{\left(-\dfrac{5}{y^2} \right)} = \dfrac{\lambda(2x - 2xy^2)}{\lambda (2y - 2x^2y)}\\ \dfrac{12y^2}{5x^2} = \dfrac{2x(1 - y^2)}{2y(1 - x^2)}\\ 12y^3(1-x^2) = 5x^3(1-y^2)

From Eq. (3):

x 2 + y 2 = x 2 y 2 y 2 = x 2 x 2 1 x^2 + y^2 = x^2y^2 \implies y^2 = \dfrac{x^2}{x^2-1}

Substitute it in:

12 ( x 2 x 2 1 ) 3 / 2 ( 1 x 2 ) = 5 x 3 ( 1 x 2 x 2 1 ) 12 \left( \dfrac{x^2}{x^2-1} \right)^{3/2} (1-x^2) = 5x^3 \left(1-\dfrac{x^2}{x^2-1} \right)

I don't like square roots, so I square the entire equation (even if you don't square it, you will still get the same answers):

144 ( x 2 x 2 1 ) 3 ( 1 x 2 ) 2 = 25 x 6 ( 1 x 2 1 ) 2 144 x 6 ( x 2 1 ) 2 ( x 2 1 ) 3 = 25 x 6 ( x 2 1 ) 2 144 x 6 ( x 2 1 ) 4 = 25 x 6 ( x 2 1 ) 3 144 x 6 ( x 2 1 ) 4 25 x 6 ( x 2 1 ) 3 = 0 x 6 ( x 2 1 ) 3 ( 144 ( x 2 1 ) 25 ) = 0 x = 0 , x = ± 1 , x = ± 13 12 144 \left(\dfrac{x^2}{x^2-1} \right)^{3} (1-x^2)^2 = 25x^6 \left(\dfrac{-1}{x^2-1} \right)^2\\ \dfrac{144x^6(x^2-1)^2}{(x^2-1)^3} = \dfrac{25x^6}{(x^2-1)^2}\\ 144x^6(x^2-1)^4 = 25x^6(x^2-1)^3\\ 144x^6(x^2-1)^4 - 25x^6(x^2-1)^3 = 0\\ x^6(x^2-1)^3(144(x^2-1) - 25) = 0\\ x=0, x= \pm 1, x = \pm \dfrac{13}{12}

Now, x , y 0 x,y \neq 0 , so we reject x = 0 x=0

For x = ± 1 x 2 = 1 x = \pm 1 \implies x^2=1 , we substitute it into Eq. (3):

1 + y 2 = y 2 1+y^2 = y^2

There are no solutions for this, so x = ± 1 x= \pm 1 is not a solution.

For x = ± 13 12 x 2 = 169 144 x = \pm \dfrac{13}{12} \implies x^2=\dfrac{169}{144} , we substitute it into Eq. (3):

169 144 + y 2 = 169 144 y 2 25 144 y 2 = 169 144 y 2 = 169 25 y = ± 13 5 \dfrac{169}{144} + y^2 = \dfrac{169}{144}y^2\\ \dfrac{25}{144}y^2 = \dfrac{169}{144}\\ y^2 = \dfrac{169}{25} \implies y = \pm \dfrac{13}{5}

We have 4 possible solutions: ( 13 12 , 13 5 ) , ( 13 12 , 13 5 ) , ( 13 12 , 13 5 ) , ( 13 12 , 13 5 ) \left( \dfrac{13}{12}, \dfrac{13}{5} \right) , \left( -\dfrac{13}{12}, \dfrac{13}{5} \right) , \left( \dfrac{13}{12}, -\dfrac{13}{5} \right) , \left( -\dfrac{13}{12}, -\dfrac{13}{5} \right)

Substitute all 4 into f ( x , y ) f(x,y) , and the largest value obtained will be the answer:

f ( 13 12 , 13 5 ) = 20 f ( 13 12 , 13 5 ) 2.152 f ( 13 12 , 13 5 ) 16.154 f ( 13 12 , 13 5 ) = 6 f \left(\dfrac{13}{12}, \dfrac{13}{5} \right) = 20\\ f \left(-\dfrac{13}{12}, \dfrac{13}{5} \right) \approx -2.152 \\ f \left(\dfrac{13}{12}, -\dfrac{13}{5} \right) \approx 16.154 \\ f \left(-\dfrac{13}{12}, -\dfrac{13}{5} \right) = -6

Therefore, the maximum value of the expression is 20 \boxed{20}

We have,

x 2 + y 2 = x 2 y 2 x^2 + y^2 = x^2y^2

1 x 2 + 1 y 2 = 1 ; x 0 , y 0 \dfrac{1}{x^2} + \dfrac{1}{y^2} = 1 ; x≠ 0, y≠0

Using the Cauchy-Schwarz inequality,

a 2 + b 2 l a + m b l 2 + m 2 \displaystyle \sqrt{a^2 + b^2} \geq \dfrac{ la + mb}{ \sqrt{l^2 + m^2} }

Putting a = 1 x , b = 1 y , l = 12 , m = 5 a = \dfrac{1}{x}, b = \dfrac{1}{y}, l = 12, m = 5 , we get

1 x 2 + 1 y 2 12 x + 5 y 13 \sqrt{ \dfrac{1}{x^2} + \dfrac{1}{y^2} }\geq \dfrac{ \dfrac{12}{x} + \dfrac{5}{y} }{13}

1 12 x + 5 y 13 \sqrt{1} \geq \dfrac{ \dfrac{12}{x} + \dfrac{5}{y} }{13}

12 x + 5 y 13 \dfrac{12}{x} + \dfrac{5}{y} \leq 13

Hence, 5 x + 12 y + 7 x y x y = 5 y + 12 x + 7 13 + 7 20 \dfrac{ 5x + 12y + 7xy }{xy} = \dfrac{5}{y} + \dfrac{12}{x} + 7 \leq 13 + 7 \leq 20

T h u s , Thus, t h e the m a x max v a l u e value o f of t h e the e x p r e s s i o n expression i s is 20. 20.

Lu Chee Ket
Sep 29, 2015

-1000000 1 -1 18.999995 -5.000005

2.59 1.084061642 -1.084061642 19.99998317 -2.138979305

2.6 1.083333333 -1.083333333 20 -2.153846154

2.61 1.082614821 -1.082614821 19.99998345 -2.168565821

Excel's answer: 20

Fredric Kardon
May 21, 2016

The calculus solution can be simplified by making the substitutions a = 1/y, b = 1/x. Then b = sqrt(1-a*a) and E can be expressed in terms of a alone. Differentiation shows that E has a maximum of 20 when a = 5/13.

Moderator note:

Can you provide more details? Thanks!

Substitute a = 1/x, b = 1/y. The first equation becomes a^2 + b^2 = 1 and the expression to be maximized becomes E = 5 * b + 12 * a +7 or E = (+/-) 5 * sort(1 - a^2) + 12 * a + 7. Setting the derivative of E to zero and solving for a gives a = (+/-)12/13, b = (+/-)5/13. By inspection the maximum value of E = 20 occurs when a and b are both positive.

Fredric Kardon - 4 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...