May be Trigo 2

Geometry Level 4

If sin 4 x a + cos 4 x b = 1 a + b {\frac{\sin^{4}x}{a}+\frac{\cos^{4}x}{b}=\frac{1}{a+b}} then

sin 8 x a 3 + cos 8 x b 3 = f ( a , b ) {\frac{\sin^{8}x}{a^3}+\frac{\cos^{8}x}{b^{3}}}=f(a,b)

find f ( 1 , 1 ) f(1,1)


The answer is 0.125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 15, 2015

When a = 1 a=1 and b = 1 b=1 , then:

sin 4 x + cos 4 x = 1 2 ( sin 2 x ) 2 + ( cos 2 x ) 2 = 1 2 ( 1 cos 2 x 2 ) 2 + ( 1 + cos 2 x 2 ) 2 = 1 2 1 2 cos 2 x + cos 2 2 x + 1 + 2 cos 2 x + cos 2 2 x = 2 2 cos 2 2 x = 0 cos 2 x = 0 x = π 4 \begin{aligned} \Rightarrow \sin^4{x} + \cos^4{x} & = \frac{1}{2} \\ (\sin^2{x})^2 + (\cos^2{x})^2 & = \frac{1}{2} \\ \left( \frac{1-\cos{2x}}{2} \right)^2 + \left( \frac{1+\cos{2x}}{2} \right)^2 & = \frac{1}{2} \\ 1 - 2\cos{2x} + \cos^2{2x} + 1 + 2\cos{2x} + \cos^2{2x} & = 2 \\ 2\cos^2{2x} & = 0 \\ \cos{2x} & = 0 \\ \Rightarrow x & = \frac{\pi}{4} \end{aligned}

Now, we have:

f ( 1 , 1 ) = sin 8 x + cos 8 x = ( 1 2 ) 8 + ( 1 2 ) 8 = 1 8 = 0.125 \begin{aligned} f(1,1) & = \sin^8{x} + \cos^8{x} \\ & = \left(\frac{1}{\sqrt{2}} \right)^8 + \left(\frac{1}{\sqrt{2}} \right)^8 \\ & = \frac{1}{8} = \boxed{0.125} \end{aligned}

In response to the Challenge Master...

{ sin 4 x a + cos 4 x b = 1 a + b . . . ( 1 ) sin 4 x b + cos 4 x a = 1 a + b . . . ( 2 ) \begin{cases} \dfrac{\sin^4{x}}{a} + \dfrac{\cos^4{x}}{b} = \dfrac{1}{a+b} &...(1) \\ \dfrac{\sin^4{x}}{b} + \dfrac{\cos^4{x}}{a} = \dfrac{1}{a+b} &...(2) \end{cases}

( 1 ) ( 2 ) : ( 1 a 1 b ) sin 4 x + ( 1 b 1 a ) sin 4 x = 0 \begin{aligned} (1)-(2): \space \left(\dfrac{1}{a} - \dfrac{1}{b}\right) \sin^4{x} + \left(\dfrac{1}{b} - \dfrac{1}{a}\right) \sin^4{x} & = 0 \end{aligned}

( 1 a 1 b ) sin 4 x = ( 1 a 1 b ) cos 4 x sin x = cos x x = π 4 ( 1 2 ) 4 ( 1 a + 1 b ) = 1 a + b ( a + b ) 2 = 4 a b a 2 + 2 a b + b 2 = 4 a b a 2 2 a b + b 2 = 0 ( a b ) 2 = 0 a = b \begin{aligned} \Rightarrow \left(\frac{1}{a} - \frac{1}{b}\right) \sin^4{x} & = \left(\dfrac{1}{a} - \frac{1}{ b}\right) \cos^4{x} \\ \sin{x} & = \cos{x} \\ \Rightarrow x & = \frac{\pi}{4} \\ \Rightarrow \left(\frac{1}{\sqrt{2}}\right)^4 \left( \frac{1}{a}+ \frac{1}{b} \right) & = \frac{1}{a+b} \\ (a+b)^2 & = 4ab \\ a^2 + 2ab + b^2 & = 4ab \\ a^2 - 2ab + b^2 & = 0 \\ (a-b)^2 & = 0 \\ a &= b \end{aligned}

x = π 4 , a = b \Rightarrow \boxed{x = \frac{\pi}{4}, a = b}

Moderator note:

Any thoughts on how to prove the generalization that Prakhar Bindal brought up?

This Is Shorter Than Mine . I Derived For Any General Pair (a,b) And got the results as 1/(a+b)^3 .

Prakhar Bindal - 5 years, 11 months ago

Log in to reply

Can you share how you derived that result? It's interesting that such a result exists, and I wonder if there are any other explanations for it.

Calvin Lin Staff - 5 years, 11 months ago

Log in to reply

Mine is a very simple approach .

I Simply Replaced (sin)^2 = 1-(cos)^2 in the original condition given

And After A Bit Manipulation

It Yielded Me A Biquadratic Equation In terms of cosx

And to my suprise it turned out to be a perfect square !

whose roots were

(cosx)^2 = b/a+b

and we can apply the pythagorean identity to get

(sinx)^2 = a/a+b

Substituting these values in the expression asked

and manipulating it yielded me 1/(a+b)^3 .

This Result Is True For Any real pair(a,b).

where a+b cant be zero otherwise the original condition given to us will not be valid

Prakhar Bindal - 5 years, 11 months ago

Log in to reply

@Prakhar Bindal Right.

The reason for that is because if se set sin 2 x = s , cos 2 x = c \sin ^2 x = s , \cos ^2 x = c , we have s + c = 1 s + c = 1 like you mentioned. Now, by Titu's Lemma ,

s 2 a + c 2 b ( s + c ) 2 a + b = 1 a + b \frac{ s^2 } { a } + \frac{ c^2 } {b} \leq \frac{ ( s + c) ^2 } { a + b } = \frac{1}{a+b}

Thus, we get that s a = c b \frac{s}{a} = \frac{c}{b} as the equality condition for the equation to hold.

Calvin Lin Staff - 5 years, 11 months ago

@Tanishq Varshney This problem seems to be badly phrased to me. The x x is extremely dependent on the a , b a, b (and only holds true for particular cases), whereas your statement seems to suggest that we have a trigonometric identity instead.

Calvin Lin Staff - 5 years, 11 months ago
汶良 林
Jul 29, 2015

a = b = 1 a = b = 1

s i n 4 x + c o s 4 x = 1 / 2 sin^{4}x + cos^{4}x = 1/2

( s i n 2 x + c o s 2 x ) 2 2 s i n 2 x c o s 2 x = 1 / 2 (sin^{2}x + cos^{2}x)^{2} - 2sin^{2}xcos^{2}x = 1/2

s i n 2 x c o s 2 x = 1 / 4 sin^{2}xcos^{2}x = 1/4

f ( 1 , 1 ) = s i n 8 x + c o s 8 x f(1, 1) = sin^{8}x + cos^{8}x

= ( s i n 4 x + c o s 4 x ) 2 2 s i n 4 x c o s 4 x = (sin^{4}x + cos^{4}x)^{2} - 2sin^{4}xcos^{4}x

= 1 / 4 2 × ( 1 / 4 ) 2 = 0.125 = 1/4 - 2×(1/4)^{2} = \boxed{0.125}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...