Mesmerizing Maxima

Algebra Level 4

If 2 x 2 + 3 y 2 + 4 z 2 = 1 2x^2 + 3y^2 + 4z^2 = 1 and M M is the maximum value of 6 x 3 y 8 z 6x-3y-8z , evaluate M \lfloor M \rfloor .

Notation: \lfloor \cdot \rfloor denotes the floor function .

Bonus: Can you solve it with/without using calculus?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Logic Alpha
Jan 26, 2021

By Cauchy-Schwarz inequality, we get

{ ( 2 x ) 2 + ( 3 y ) 2 + ( 2 z ) 2 } { ( 3 2 ) 2 + ( 3 ) 2 + ( 4 ) 2 } ( 6 x 3 y 8 z ) 2 \left\{ {(\sqrt{2}x)}^{2}+{(\sqrt{3}y)}^{2}+{(2z)}^{2} \right\} \left\{ {(3\sqrt{2})}^{2}+{(-\sqrt{3})}^{2}+{(-4)}^{2} \right\} \geq {(6x-3y-8z)}^{2}

Therefore, M = 37 M=\sqrt{37} and the answer is 6 6 .

Bahahahahaah, I totally forgot about CS! +1 +1 +1

Pi Han Goh - 4 months, 2 weeks ago

Log in to reply

Lol I also forgot about Cauchy, I had to use RMS-AM with 18 x/3 terms, 3 -y terms, and 16 -z/2 terms (used a bit of algebra to find the proper coefficient and number of times to use each term).

Razzi Masroor - 4 months, 1 week ago

Log in to reply

Pi Han Goh - 4 months, 1 week ago

Log in to reply

@Pi Han Goh Nevermind, I got it:

Apply RMS-AM inequality on the 37-tuplets, ( x / 3 , x / 3 , , x / 3 18 times , y , y , y , z / 2 , z / 2 , , z / 2 16 times ) ( \underbrace{x/3, x/3, \ldots, x/3}_{18 \text{ times}}, -y,-y,-y, \underbrace{-z/2, -z/2, \ldots , -z/2}_{16 \text{ times}} ) Then 18 ( x / 3 ) 2 + 3 ( y ) 2 + 16 ( z / 2 ) 2 37 18 ( x / 3 ) + 3 ( y ) + 16 ( z ) 37 \sqrt{\dfrac{18(x/3)^2 + 3(-y)^2 + 16(-z/2)^2 }{37}} \geqslant \dfrac{18(x/3) + 3(-y) + 16(-z)}{37} Or 6 x 3 y 8 z 37 2 x 2 + 3 y 2 + 4 z 2 = 1 \dfrac{6x-3y-8z}{\sqrt{37}} \leqslant \sqrt{2x^2 + 3y^2 + 4z^2} = 1 The maximum is obtained when x / 3 = y = z / 2 x/3 = -y = -z/2 .

Pi Han Goh - 4 months, 1 week ago

Log in to reply

@Pi Han Goh Yea that's exactly what I did.

Razzi Masroor - 4 months ago

Thanks for the really concise solution. By the way, what's the thought process of making something simpler, or basically how did you approach this problem?

Utsav Playz - 4 months, 2 weeks ago

Log in to reply

I did this roughly the same way. The first step was to scale so that we're on a sphere: X = 2 x , Y = 3 y , Z = 2 z . X = \sqrt{2} x, Y = \sqrt{3} y, Z = 2z. Then we're maximizing 3 2 X 3 Y 4 Z 3\sqrt{2} X - \sqrt{3} Y - 4Z on the surface of the unit sphere, and this is just a dot product, so this happens when the unit vector ( X , Y , Z ) (X,Y,Z) is parallel to ( 3 2 , 3 , 4 ) . (3\sqrt{2}, -\sqrt{3}, -4).

Patrick Corn - 4 months, 2 weeks ago

Log in to reply

Yes. We can even rotate axes and say the problem is equivalent to maximising 37 z \sqrt{37}z for x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 .

Mark Hennings - 4 months, 2 weeks ago
Pi Han Goh
Jan 26, 2021

The maximum value of 6 x 3 y 8 z 6x-3y-8z must occur when x 0 , y 0 , z 0 x\geq0, y\leq0, z \leq0 . Let ( X , Y , Z ) = ( x , y , z ) (X,Y,Z) = (x,-y,-z) . Then we want to maximize 6 X + 3 Y + 8 Z 6X + 3Y + 8Z subject to the constraints 2 X 2 + 3 Y 2 + 4 Z 2 = 1 2X^2 + 3Y^2 + 4Z^2 = 1 for non-negative numbers X , Y , Z X,Y,Z .

Let N = 6 X + 3 Y + 8 Z N = 6X + 3Y + 8Z , then 3 Y = N 6 X 8 Z 9 Y 2 = ( 6 X + 8 Z N ) 2 . 3Y = N - 6X - 8Z \quad \Rightarrow \quad 9Y^2 = (6X + 8Z - N)^2 .

Substitute this value into the constraint 2 X 2 + 3 Y 2 + 4 Z 2 = 1 6 X 2 + 9 Y 2 + 12 Z 2 = 3 2X^2 + 3Y^2 + 4Z^2 = 1 \quad\Leftrightarrow\quad 6X^2 + 9Y^2 + 12Z^2 = 3 gives 6 X 2 + ( 6 X + 8 Z N ) 2 + 12 Z 2 = 3. 6X^2 + (6X + 8Z - N)^2 + 12Z^2 = 3.

When N N is maximized, this means that the plane N = 6 X + 3 Y + 8 Z N = 6X + 3Y + 8Z touches the ellipsoid 2 X 2 + 3 Y 2 + 4 Z 2 = 1 2X^2 + 3Y^2 + 4Z^2 = 1 at exactly 1 point. In other words, the (quadratic) discriminant of the equation above (in X X , and in Z Z ) are both 0 ( B 2 4 A C = 0 B^2-4AC=0 ):

{ 1 2 2 ( 8 Z N ) 2 4 72 ( N 2 3 ) = 0 1 6 2 ( 6 X N ) 2 4 76 ( N 2 3 ) = 0 \begin{cases} 12^2 (8Z - N)^2 - 4 \cdot 72 \cdot(-N^2 - 3) = 0 \\ 16^2 (6X - N)^2 - 4 \cdot 76 \cdot (-N^2 - 3) = 0 \end{cases}

We have formed another two quadratic equations, both have a discriminant of 0 too!

This gives max ( N ) = 37 \max(N) = \sqrt{37} . Hence M = max ( N ) = 37 S = 6 M = \max(N) = \sqrt{37} \Rightarrow \lfloor S \rfloor = \boxed6 .

But when does this maximum value occur? It occurs when N = 37 ( X , Z ) = ( 3 37 , 2 37 ) Y = 1 37 ( x , y , z ) = ( 3 37 , 1 37 , 2 37 ) . N = \sqrt{37} \quad \Rightarrow \quad (X,Z) = \left( \dfrac{3}{\sqrt{37}}, \dfrac2{\sqrt{37}} \right) \quad \Rightarrow \quad Y = \dfrac1{\sqrt{37}} \quad \Rightarrow \quad (x,y,z) = \left( \dfrac3{\sqrt{37}}, -\dfrac1{\sqrt{37}}, -\dfrac2{\sqrt{37}} \right) .


Alternative solution via calculus : We will solve this via Lagrange multipliers (LM).

Let f ( x , y , z ) = 2 x 2 + 3 y 2 + 4 z 2 f(x,y,z) = 2x^2 + 3y^2 + 4z^2 and g ( x , y , z ) = 6 x 3 y 8 z g(x,y,z) = 6x-3y-8z . By LM, we have Δ f = λ Δ g 4 x , 6 y , 8 z = λ 6 , 3 , 8 . \Delta f = \lambda \Delta g \quad \Rightarrow \quad \langle 4x, 6y,8z\rangle = \lambda\langle 6,-3,8 \rangle .

This means that λ = 4 x 6 = 6 y 3 = 8 z 8 λ = ± 37 \lambda = \dfrac{4x}6 = \dfrac{6y}{-3} = \dfrac{8z}{-8} \quad \Rightarrow \lambda = \pm \sqrt{37}

Thus, M = max ( λ ) = 37 S = 6 M = \max(\lambda) = \sqrt{37} \Rightarrow \lfloor S \rfloor = \boxed6 . Equality holds when 2 x 3 = 2 y = z ( x , y , z ) = ( 3 37 , 1 37 , 2 37 ) \dfrac{2x}3 = -2y = -z \quad\Leftrightarrow\quad (x,y,z) = \left( \dfrac3{\sqrt{37}}, -\dfrac1{\sqrt{37}}, -\dfrac2{\sqrt{37}} \right) .

But is this expression maximized? Just use the Hessian matrix on f ( x , y , z ) f(x,y,z) to get a determinant det [ 2 f x 2 2 f y x 2 f z x 2 f x y 2 f y 2 2 f z y 2 f x z 2 f y z 2 f z 2 ] = det [ 4 0 0 0 6 0 0 0 8 ] = 4 6 8 > 0 \det { \begin{bmatrix}{\tfrac{\partial^2 f}{\partial x^2} } && {\tfrac{\partial^2 f}{\partial y \partial x} } && {\tfrac{\partial^2 f}{\partial z \partial x} } \\ {\tfrac{\partial^2 f}{\partial x\partial y} } && {\tfrac{\partial^2 f}{\partial y^2} } && {\tfrac{\partial^2 f}{\partial z \partial y} } \\ {\tfrac{\partial^2 f}{\partial x \partial z} } && {\tfrac{\partial^2 f}{\partial y \partial z} } && {\tfrac{\partial^2 f}{\partial z^2} }\end{bmatrix} } = \det { \begin{bmatrix}{4} && {0} && {0} \\ {0} && {6} && {0} \\ {0} && {0} && {8}\end{bmatrix} } = 4\cdot 6\cdot8 > 0 and we're done!

Thanks! By the way, that's a unique Calculus Solution. Must have thought critically that I'm inspired by you. Also, you can now change the S S to M M as someone changed the question.

Utsav Playz - 4 months, 2 weeks ago

Log in to reply

Done. Thanks!

Pi Han Goh - 4 months, 2 weeks ago

Feel free to share your calculus solution too (if it's different from mine) ;)

Pi Han Goh - 4 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...