Minima doesn't always involve symmetry!

Algebra Level 1

Let x , y x,y and z z be positive reals such that x + y + z = 6 x+y+z=6 . Find the minimum value of the expression

16 y z + 36 x z + 64 x y x y z . \dfrac{16yz+36xz+64xy}{xyz}.


The answer is 54.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Deepanshu Gupta
Oct 11, 2014

This is Similar question which I posted . Click here

So Here also I post same Solution

Let E = 16 y z + 36 x z + 64 x y x y z = 16 x + 36 y + 64 z E=\frac { 16yz+36xz+64xy }{ xyz } =\frac { 16 }{ x } +\frac { 36 }{ y } +\frac { 64 }{ z } .

Now using A M H M AM\quad \ge \quad HM .

x 4 + x 4 + x 4 + x 4 + y 6 + y 6 + y 6 + y 6 + y 6 + y 6 + z 8 + z 8 + z 8 + z 8 + z 8 + z 8 + z 8 + z 8 18 18 4 x + 4 x + 4 x + 4 x + 6 y + 6 y + 6 y + 6 y + 6 y + 6 y + 8 z + 8 z + 8 z + 8 z + 8 z + 8 z + 8 z + 8 z + x + y + z 324 E E 54 E m i n = 54 \dfrac { \frac { x }{ 4 } +\frac { x }{ 4 } +\frac { x }{ 4 } +\frac { x }{ 4 } +\frac { y }{ 6 } +\frac { y }{ 6 } +\frac { y }{ 6 } +\frac { y }{ 6 } +\frac { y }{ 6 } +\frac { y }{ 6 } +\frac { z }{ 8 } +\frac { z }{ 8 } +\frac { z }{ 8 } +\frac { z }{ 8 } +\frac { z }{ 8 } +\frac { z }{ 8 } +\frac { z }{ 8 } +\frac { z }{ 8 } }{ 18 } \\ \quad \\ \ge \quad \frac { 18 }{ \frac { 4 }{ x } +\frac { 4 }{ x } +\frac { 4 }{ x } +\frac { 4 }{ x } +\frac { 6 }{ y } +\frac { 6 }{ y } +\frac { 6 }{ y } +\frac { 6 }{ y } +\frac { 6 }{ y } +\frac { 6 }{ y } +\frac { 8 }{ z } +\frac { 8 }{ z } +\frac { 8 }{ z } +\frac { 8 }{ z } +\frac { 8 }{ z } +\frac { 8 }{ z } +\frac { 8 }{ z } +\frac { 8 }{ z } + } \\ \\ \Longrightarrow x+y+z\quad \ge \quad \frac { 324 }{ E } \\ \Longrightarrow E\quad \ge \quad 54\\ { \Longrightarrow E }_{ min }=54 .

Well this Can also be solved by using AM-GM inequality

U s i n g A M G M E × ( 6 ) = E × ( x + y + z ) = ( 16 + 36 + 64 ) + ( 16 y x + 36 x y ) + ( 36 z y + 64 y z ) + ( 16 z x + 64 x z ) 324 Using\quad AM\quad \ge \quad GM\\ E\times (6)=E\times (x+y+z)\\ \quad \quad \quad \quad =\quad (16+36+64)\quad +\quad (\frac { 16y }{ x } +\frac { 36x }{ y } )+\quad (\frac { 36z }{ y } +\frac { 64y }{ z } )+\quad (\frac { 16z }{ x } +\frac { 64x }{ z } )\quad \ge \quad 324 .

Now Use simple AM-GM on variables and get The required answer.

NOTE

Values of x , y , z x,y,z . are ( 4 / 3 , 2 , 8 / 3 ) ( 4/3 , 2 , 8/3 ) .

( By using fact that numbers are equal when AM=GM=HM ).

Nice solution. @DEEPANSHU GUPTA I did it the same way. It's quite fascinating.

Sandeep Bhardwaj - 6 years, 7 months ago

Log in to reply

Thanks..!!

Deepanshu Gupta - 6 years, 7 months ago

It's nice to see this variety of solutions. Personally I would have applied Titu's Lemma. But it's nice to think of a solution based on AM-GM-HM. In your problem, there was even a solution using Lagranges multipliers. Fascinating!

Pratyush Pandey - 4 years, 8 months ago
Yash Singhal
Oct 8, 2014

This question is a direct application of Titu's Lemma.

Simplifying the expression, we get:

16 x + 36 y + 64 z \frac{16}{x}+\frac{36}{y}+\frac{64}{z}

Applying Titu's Lemma we get the minimum value of the given expression as:

( 16 + 36 + 64 ) 2 x + y + z \frac{(\sqrt{16}+\sqrt{36}+\sqrt{64})^{2}}{x+y+z}

( 4 + 6 + 8 ) 2 6 \frac{(4+6+8)^{2}}{6}

324 6 = 54 \frac{324}{6}=54

and we are done!

It's a typo in first sentence of question, it should be x+y+z = 6 6 @Yash Singhal

Harsh Shrivastava - 6 years, 8 months ago

Log in to reply

Fixed. Thanks for reporting.

Yash Singhal - 6 years, 8 months ago

W h a t What i s is w r o n g wrong w i t h with A . M . G . M . ? ? A.M.-G.M.??

x + y + z = 6 x+y+z=6 (GIVEN) we also have x + y + z 3 \frac{x+y+z}{3} ≥ 3. ( x y z ) 1 / 3 3.(xyz)^{1/3} A . M . G . M . A.M.-G.M.

then we should get 1 x y z \frac{1}{xyz} ≥ 1 8 \frac{1}{8} ..... 1 \boxed{1}

Applying A.M. G.M. to the numerator of the given expression(i will note by Q)

Q Q≥ 3. ( x y z ) 2 / 3 . ( 16.36.64 ) 2 / 3 3.(xyz)^{2/3}.(16.36.64)^{2/3}

dividing throughout by xyz

Q x y z \frac{Q}{xyz} ≥ 3. ( 1 x y z ) 1 / 3 . ( 16.36.64 ) 2 / 3 3.(\frac{1}{xyz})^{1/3}.(16.36.64)^{2/3}≥ 3 2 . ( 16.36.64 ) 2 / 3 \frac{3}{2}.(16.36.64)^{2/3}

solving, we get:

L . H . S . L.H.S.≥ 24. ( 9 ) 1 / 3 = 49.922 24.(9)^{1/3}=49.922

soo....?

Aritra Jana - 6 years, 8 months ago

Log in to reply

See if your equality case occurs .

Dinesh Chavan - 6 years, 8 months ago

Why is this tagged cauchys?

Trevor Arashiro - 6 years, 8 months ago

Log in to reply

It can also be solved by Cauchy Inequality in Engel form.

Yash Singhal - 6 years, 8 months ago

@Yash Singhal will you please explain equality case in this inequality ? Thanks

Deepanshu Gupta - 6 years, 7 months ago

Same here ! ! \huge{!!}

Mehul Chaturvedi - 6 years, 5 months ago

i fail to understand why this question is not approachable by A.M. G.M and by A.M-G.M. the value of the minimum is lesser :/

Aritra Jana - 6 years, 8 months ago

Log in to reply

A.M. >= G.M. does not imply that the minimum of A.M. is the G.M..

For example, we have x^2+1 >= x by A.M. G.M., but the minimum of x^2+1 is not x.

Kenny Lau - 6 years, 8 months ago

Log in to reply

by A.M. G.M. we get x 2 + 1 2 x x^{2}+1≥\boxed{2x} And i think that holds true for positive x

Aritra Jana - 6 years, 8 months ago

Log in to reply

@Aritra Jana Of course the equality hold true for every x, but the minimum isn't 2x.

Kenny Lau - 6 years, 8 months ago

Log in to reply

@Kenny Lau tell me something, if x is real, then how come the ( m i n ) (min) ( x 2 + 1 ) (x^{2}+1) i s 2 x ? ? is ≤2x??

if that were the case, then the discriminant of the quadratic on x becomes 0 ≤0 thus discarding all possibilities of real values of x

Aritra Jana - 6 years, 8 months ago

Log in to reply

@Aritra Jana Actually, what is the result that you calculate? (With some brief explanation please)

Kenny Lau - 6 years, 8 months ago

Log in to reply

@Kenny Lau check my comment.. :D i gave it some time ago... :D

Aritra Jana - 6 years, 8 months ago

Log in to reply

@Aritra Jana Oh, I missed it. So it's like saying the minimum of x 2 x^2 is 1 -1 because x 2 1 x^2\ge-1 holds for all real x x .

Kenny Lau - 6 years, 8 months ago

Log in to reply

@Kenny Lau nope...still wrong... the equality can never hold :P

Aritra Jana - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...