Minimize the Angle

Geometry Level 4

Find the smallest possible angle (in degrees) in a triangle with side lengths 8 and 13 and an area of 40.

Enter your answer to 3 decimal places.


The answer is 18.766.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 31, 2017

Geometrical solution:

Let the triangle be A B C ABC , where a = 8 a=8 and b = 13 b=13 . Then the area of the triangle:

[ A B C ] = 1 2 a b sin C 40 = 1 2 × 8 × 13 sin C sin C = 10 13 cos C = ± 69 13 C 50.2 8 , 129.7 2 \begin{aligned} [ABC] & = \frac 12 ab \sin \angle C \\ 40 & = \frac 12 \times 8 \times 13 \sin \angle C \\ \sin \angle C & = \frac {10}{13} & \small \color{#3D99F6} \implies \cos \angle C = \pm \frac {\sqrt{69}}{13} \\ \implies \angle C & \approx 50.28^\circ , \ 129.72^\circ \end{aligned}

We note that the smallest angle is A \angle A since a = 8 a=8 is the shortest side length. And the larger C 129.7 2 \angle C \approx 129.72^\circ gives a smaller A \angle A . Let us now find the side length c c by the cosine rule so that we can use the sine rule to find A \angle A .

c 2 = a 2 + b 2 2 a b cos C For C > 9 0 , cos C = 69 13 = 8 2 + 1 3 2 + 2 ( 8 ) ( 13 ) 69 13 c = 233 + 16 69 \begin{aligned} c^2 & = a^2+b^2 - 2ab \color{#3D99F6} \cos \angle C & \small \color{#3D99F6} \text{For }C > 90^\circ, \ \cos \angle C = - \frac {\sqrt{69}}{13} \\ & = 8^2+13^2+2(8)(13)\frac {\sqrt{69}}{13} \\ \implies c & = \sqrt{233+16\sqrt{69}} \end{aligned}

By the sine rule:

sin A a = sin C c sin A 8 = 10 13 233 + 16 69 sin A = 80 13 233 + 16 69 A 18.766 \begin{aligned} \frac {\sin \angle A}a & = \frac {\sin \angle C}c \\ \frac {\sin \angle A}8 & = \frac {\frac {10}{13}}{\sqrt{233+16\sqrt{69}}} \\ \sin \angle A & = \frac {80}{13\sqrt{233+16\sqrt{69}}} \\ \implies \angle A & \approx \boxed{18.766}^\circ \end{aligned}

Beautiful!

I love your solution.

Akeel Howell - 3 years, 7 months ago

Log in to reply

Thank you.

Chew-Seong Cheong - 3 years, 7 months ago

@Chew-Seong Cheong This is just an awesome solution.

Sumukh Bansal - 3 years, 7 months ago

Log in to reply

Thanks, glad that you like it.

Chew-Seong Cheong - 3 years, 7 months ago

Log in to reply

However I want to ask that For C > 9 0 , is cos C = 6 9 13 \text{For }C > 90^\circ,\text{is} \ \cos \angle C=\dfrac{\sqrt69}{13}

Sumukh Bansal - 3 years, 7 months ago

Log in to reply

@Sumukh Bansal Note that for 0 θ < 9 0 0^\circ \le \theta < 90^\circ , 0 < cos θ 1 0 < \cos \theta \le 1 and 9 0 θ < 18 0 90^\circ \le \theta < 180^\circ , 1 < cos θ 0 -1 < \cos \theta \le 0 . cos θ < 0 \cos \theta < 0 in the second quadrant 9 0 90^\circ to 18 0 180^\circ .

Chew-Seong Cheong - 3 years, 7 months ago

Log in to reply

@Chew-Seong Cheong @Chew-Seong Cheong Thank sir

Sumukh Bansal - 3 years, 7 months ago
Akeel Howell
Oct 30, 2017

The smallest angle will be opposite the smallest side, which is either the side with length 8 , 8, or the other missing side (call it side c c ).

Thus, we can consider the case where c 8 c \leq 8 . If this is the case, then 1 2 ( 13 ) ( 8 ) sin ( θ ) = 40 θ = arcsin ( 10 13 ) 50.28 5 \dfrac{1}{2}(13)(8)\sin{(\theta)} = 40 \implies \theta = \arcsin{\left( \dfrac{10}{13} \right)} \approx 50.285^{\circ} .

In the case that c > 8 c > 8 , we set the semi-perimeter equal to s s to get that s ( s 8 ) ( s 13 ) ( s c ) = 40 s ( s 8 ) ( s 13 ) ( s c ) = 1600. \sqrt{s(s-8)(s-13)(s-c)} = 40 \implies s(s-8)(s-13)(s-c) = 1600.

Since s = 8 + 13 + c 2 = 21 + c 2 21 + c 2 ( 5 + c 2 ) ( c 5 2 ) ( 21 c 2 ) = 1600 ( 21 + c ) ( 5 + c ) ( c 5 ) ( 21 c ) = 25600 ( 441 c 2 ) ( c 2 25 ) = 25600 So c 2 ( 466 c 2 ) = 36625 s = \dfrac{8+13+c}{2} = \dfrac{21+c}{2} \implies \dfrac{21+c}{2}\left( \dfrac{5+c}{2} \right)\left( \dfrac{c-5}{2} \right)\left( \dfrac{21-c}{2} \right) = 1600 \\ \therefore \left( 21+c \right)\left( 5+c \right)\left( c-5 \right)\left( 21-c \right) = 25600 \implies \left( 441-c^2 \right)\left( c^2-25 \right) = 25600 \\ \text{So } c^2 \left( 466 - c^2 \right) = 36625

  • Finding the roots of the quartic equation:

Since c 2 ( 466 c 2 ) c^2 \left( 466 - c^2 \right) is a shifted even function (a shifted quartic that opens downward), we take the following steps to find the roots of the equation:

Guess: c = 466 2 = 233 c = \sqrt{\dfrac{466}{2}} = \sqrt{233} . Plugging this into the equation gives 23 3 2 = 36625 233^2 = 36625 but 23 3 2 36625 = 17664 233^2 - 36625 = 17664 .

Take c \triangle c to be our error in c c and this gives that ± 23 3 2 36625 = c = ± 17664 = ± 16 69 \pm \sqrt{233^2-36625} = \triangle c = \pm \sqrt{17664} = \pm 16\sqrt{69} .

Thus, c = 233 ± 16 69 c = \sqrt{233 \pm 16\sqrt{69}} . We neglect the two negative roots because the side length of a triangle cannot be negative. Of these two remaining solutions, we will only consider c = 233 + 16 69 c = \sqrt{233 + 16\sqrt{69}} because by maximizing the length of side c c , we minimize the angle opposite the side with length 8 8 .

Thus, we can rewrite the area of the triangle in terms of the angle opposite the side with length 8 8 (call it angle B B ), as:

1 2 ( 13 ) ( 233 + 16 69 ) sin B = 40 B = arcsin ( 80 13 233 + 16 69 ) \dfrac{1}{2}(13)\left( \sqrt{233 + 16\sqrt{69}} \right)\sin{B} = 40 \implies B = \arcsin{\left( \dfrac{80}{13\sqrt{233 + 16\sqrt{69}}} \right)} .

Hence, B 18.76 6 B \approx 18.766^{\circ} .

Angle B B is clearly the smaller of the two cases tested here so the smallest possible angle in the triangle is an angle of 18.76 6 18.766^{\circ} .

A r e a = 1 / 2 a b S i n ( γ ) , γ = a n g l e b e t w e e n a a n d b . a = 8 , b = 13 , a n d a r e a = 40. S i n γ = 2 40 / 8 / 13 = 10 / 13 , γ = 50.284 9 o o r 129.715 1 o . S o s i d e c = 8 2 + 1 3 2 ± 2 8 13 C o s ( 50.2849 ) = 10.0047 / 19.1287. S i n c e w e w a n t s m a l l e s t a n g l e , a n d s m a l l e s t s i d e i s 8 , w e w i l l h a v e t o t a k e γ a s 129.715 1 o a n d c = 19.1287. A p p l y i n g S i n e L a w , a n d t a k i n g α , a n g l e o p p o s i t e 8 , α = S i n 1 ( S i n γ / 19.1287 8 ) = 18.6048.. Area=1/2*a*b*Sin(\gamma), \gamma=angle ~between~a~and~b. ~~~~~a=8, ~b=13, ~and~area~=40.\\ \therefore~Sin\gamma=2*40/8/13=10/13,~~~\implies~\gamma=50.2849^o ~~or~~129.7151^o.\\ So~side~c=\sqrt{8^2+13^2 \pm 2*8*13*Cos(50.2849)}=10.0047/19.1287.\\ Since~ we~ want~ smallest~ angle,~ and ~smallest~ side ~is~ 8,~ we~ will~ have~ to ~take~ \gamma~ as~ 129.7151^o~ and ~~c=19.1287. \\ Applying ~Sine ~Law,~and~taking~\alpha, ~angle ~opposite~8,\\ \alpha~=~Sin{-1}(Sin\gamma/ 19.1287*8)=\Large \color{#D61F06}{18.6048.}.\\
Note: In the last step all values matches, and my calculator is 50 digit, I think my decimal points may be more correct than those of the answer.
I missed the problem since I missed the point that in range of 0 to 180, Sin of two angles is same so missed
129.7151^o.


Niranjan Khanderia - 3 years, 7 months ago

Log in to reply

In the last line, it seems like you have α = arcsin ( sin γ × 8 19.1287 ) \alpha = \arcsin{\left( \dfrac{\sin{\gamma} \times 8}{19.1287} \right)} , which should give you the desired result as you've already shown that sin γ = 10 13 \sin{\gamma} = \dfrac{10}{13} .

Akeel Howell - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...