Minimize this

Algebra Level 5

For real numbers x , y x,y and z z , find the minimum value of 2 x 2 + 5 y 2 + 2 z 2 + 4 x y 4 y z 2 z 2 x . 2x^2+5y^2+2z^2+4xy-4yz-2z-2x.


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Pranjal Jain
Jan 16, 2015

Let f ( x , y , z ) = 2 x 2 + 5 y 2 + 2 z 2 + 4 x y 4 y z 2 z 2 x f(x,y,z)=2x^2+5y^2+2z^2+4xy-4yz-2z-2x

At the point of extrema, f x = f y = f z = 0 \frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=\frac{\partial f}{\partial z}=0

  • f x = 0 x + y = 1 2 \frac{\partial f}{\partial x}=0\\\Rightarrow x+y=\frac{1}{2}

  • f z = 0 z y = 1 2 \frac{\partial f}{\partial z}=0\\\Rightarrow z-y=\frac{1}{2}

  • f y = 0 5 y + 2 x = 2 z \frac{\partial f}{\partial y}=0\\\Rightarrow 5y+2x=2z

Solving these 3 equations, we get x = z = 1 2 ; y = 0 x=z=\frac{1}{2};y=0

Substituting back, we get f ( x , y , z ) = 1 f(x,y,z)=-1 .

Substituting x = y = z = 0 x=y=z=0 would give f ( x , y , z ) = 0 f(x,y,z)=0 proving this extrema is minima.

Nice application of calculus. Congratulations.
The expression can be put as under:-
E x p = ( x 1 ) 2 + ( z 1 ) 2 2 + ( x + 2 y ) 2 + ( z 2 y ) 2 3 y 2 . E x p = ( x 1 ) 2 + ( z 1 ) 2 + ( x + 2 y ) 2 + ( z 2 y ) 2 2 3 y 2 . Square can not contribute to any negative values. But giving any value to y will ultimately give a positive 5 y 2 . S o y = 0 i s t h e b e s t c h o i c e . E x p = ( x 1 ) 2 + ( z 1 ) 2 + x 2 + z 2 2 B e c a u s e o f s y m a t r y i n x a n d z , z = x . S o E x p = 2 ( x 1 ) 2 + 2 x 2 2 2 x 2 2 x 1 m u s t b e m i n i m u m . This is a parabola opening up, with vertx as ( 1 2 , 1 ) . x = z = 1 2 , E x p = 1 Exp= (x-1)^2 + (z-1)^2 -2 +(x+2y)^2 + (z-2y)^2 -3y^2. \\Exp= (x-1)^2 + (z-1)^2+(x+2y)^2 + (z-2y)^2 - 2 -3y^2.\\\text{Square can not contribute to any negative values. } \\ \text{But giving any value to y will ultimately give a positive }5y^2.\\ So~y=0~is~ the~ best~ choice. \\\therefore~Exp = (x-1)^2 + (z-1)^2 +x^2 + z^2 -2\\Because~ of ~symatry ~in~ x~ and ~z,~~z=x.\\So~ Exp=2(x-1)^2 +2x^2 -2\\\implies~2x^2- 2x - 1 ~~must~ be ~minimum.\\\text{This is a parabola opening up, with vertx as } (\dfrac{1}{2}, -1) .\\x=z= \dfrac{1}{2},~~~~Exp=\boxed{-1}

Niranjan Khanderia - 6 years, 4 months ago

Log in to reply

Yes ! I was able do it without calculus ! Nice solution ! Upvoted.

Keshav Tiwari - 6 years, 4 months ago

Nice solution! Without calculus! :)

Pranjal Jain - 6 years, 4 months ago

Log in to reply

I still prefer calculus because it is general. There is a reason why mathematicians discovered it.

Steven Zheng - 6 years, 4 months ago

Log in to reply

@Steven Zheng Yeah! I prefer calculus as well. And I was wondering why is it kept under algebra and not calculus.

Pranjal Jain - 6 years, 4 months ago

Log in to reply

@Pranjal Jain This problem can be solved using both calculus and algebra, but I find the algebra solution more elegant. Hint:

The expression can rewritten as ( x + 2 y z ) 2 + ( x + z 1 ) 2 + y 2 1 (x+2y-z)^2+(x+z-1)^2+y^2-1

See the elegance? Although this can sometimes be problematic (this happens when we get an inconsistent system)

Aneesh Kundu - 6 years, 4 months ago

I also did the same. but pranjal can u explain why we partially differentiate to get max.

mudit bansal - 6 years, 4 months ago

Log in to reply

Since x,y,z are independent of each other, we can partially differentiate the given expression. Had there been any restriction, I would have done this and checked if it satisfies restriction. Else, I must have used some other method like Langrange's multipliers or something else. It can also be explained by using some concepts of topology, I suppose.

Pranjal Jain - 6 years, 4 months ago

What I am trying to do is calculating x such that "surface" of expression has "slope" 0. Similarly y and z. And then finding a point(s) in 3 dimensions where it gets "slope" 0 with change in x, y or z.

"Slope" used here is not the one used in 2 dimensions.

Pranjal Jain - 6 years, 4 months ago

Log in to reply

you are explaining me the reason which I explained u in van...great

mudit bansal - 6 years, 4 months ago

Log in to reply

@Mudit Bansal Oh really? I didn't remember!

Pranjal Jain - 6 years, 4 months ago
Ayush Verma
Jan 19, 2015

If you want to solve by only using algebra...

this can also be written as,

S = 2 ( x + y ) 2 + 2 ( y z ) 2 + y 2 2 ( z + x ) l e t ( x + y ) = a , ( y z ) = b , ( z + x ) = a b w h e r e a , b , y a r e m u t u a l l y i n d e p e n d e n t v a r i a b l e s S = 2 a 2 + 2 b 2 2 a + 2 b + y 2 = 2 { ( a 1 2 ) 2 + ( b + 1 2 ) 2 1 2 } + y 2 c l e a r l y , S m i n = 1 S=2{ \left( x+y \right) }^{ 2 }+2{ \left( y-z \right) }^{ 2 }+{ y }^{ 2 }-2\left( z+x \right) \\ \\ let\quad \left( x+y \right) =a,\left( y-z \right) =b,\left( z+x \right) =a-b\\ \\ where\quad a,b,y\quad are\quad mutually\quad independent\quad variables\\ \\ S=2{ a }^{ 2 }+2{ b }^{ 2 }-2a+2b+{ y }^{ 2 }\\ \\ =2\left\{ { \left( a-\cfrac { 1 }{ 2 } \right) }^{ 2 }+{ \left( b+\cfrac { 1 }{ 2 } \right) }^{ 2 }-\cfrac { 1 }{ 2 } \right\} +{ y }^{ 2 }\\ \\ clearly,\\ \\ { S }_{ min }=-1

It is short and obvious. Congratulations. Much better then mine. Mine would give only another method of approach.

Niranjan Khanderia - 6 years, 4 months ago
Mayank Khetan
Jan 20, 2015

We can write the given expression as

f(x,y,z) = ( x + 2 y z ) 2 + ( x + z 1 ) 2 + y 2 x+2y-z)^{2} + (x+z-1)^{2} + y^{2} -1

Clearly, for y=0, x=1/2, z=1/2, the square terms become zero.

Thus min. value of f(x,y,z) is 1 \boxed{-1}

Carlos Victor
Jan 19, 2015

the expression can be as under: K-2 , where K=(x+y)^2+(y-z)^2+(x+y-1)^2+(y-z+1)^2+y^2. Observe that the minimum value of K occurs for y=0 and K= 2x^2-2x+1 +2z^2-2z+1 , so o minimum value of the expression is 1/2+1/2 -2 = -1.

Trying to understand with Latex.
K = ( x + y ) 2 + ( y z ) 2 + ( x + y 1 ) 2 + ( y z + 1 ) 2 + y 2 . m i n i m u m v a l u e o f K o c c u r s f o r y = 0 a n d K = 2 x 2 2 x + 1 + 2 z 2 2 z + 1 , H o w i s m i n i m u m o f 2 x 2 2 x + 1 , e q u a l t o 1 / 2 ? It must be shown. Differentiate and equate to zero, or give x-coordinate of the vertex of the parabola OR any other method. K=(x+y)^2+(y-z)^2+(x+y-1)^2+(y-z+1)^2+y^2. \\minimum ~value~ of~ K ~occurs ~for~ y=0 ~\\and~ K= 2x^2-2x+1 +2z^2-2z+1 , \\ How ~is~ minimum ~of ~ 2x^2-2x+1, equal ~to~1/2?\\ \text{It must be shown. Differentiate and equate to zero, or give}\\ \text{x-coordinate of the vertex of the parabola OR any other method.}

Niranjan Khanderia - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...