Missing Matrix Members

Algebra Level 4

If M = ( A 1 B 2 2 3 C 5 D ) M = \begin{pmatrix} A & 1 & B \\ 2 & 2 & 3 \\ C & 5 & D \end{pmatrix} and M 1 = ( 5 E 11 F 13 G 2 H 4 ) M^{-1} = \begin{pmatrix} -5 & E & -11 \\ F & -13 & G \\ 2 & H & 4 \end{pmatrix} , find A + B + C + D + E + F + G + H A + B + C + D + E + F + G + H .


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Aareyan Manzoor
Jul 17, 2019

we could use M M 1 = I MM^{-1}= I and M 1 M = I M^{-1}M=I to get a total of 18 different equations, the strategy to solve this problem would be to optimally pick 8 that makes this easier.

let us first define some notation, let i A _i A denote the ith row of A A , and A i A_i denote the ith column of A A . also, notice by definition of the identity matrix i A A j 1 = δ i j _i A A^{-1}_j = \delta_{ij} .

Notice that 2 M _2 M and M 2 M_2 are independent of our variables, meaning products involving them will only be linear in each variable. furthermore notice some columns and rows of M 1 M^{-1} contains only one variable. use this to your advantage to get the following: 2 M M 1 1 = ( 2 2 3 ) ( 5 F 2 ) = 10 + 2 F + 6 = 0 F = 2 2 M M 3 1 = ( 2 2 3 ) ( 11 G 4 ) = 22 + 2 G + 12 = 0 G = 5 1 M 1 M 2 = ( 5 E 11 ) ( 1 2 5 ) = 5 + 2 E 55 = 0 E = 30 3 M 1 M 2 = ( 2 H 4 ) ( 1 2 5 ) = 2 + 2 H + 20 = 0 H = 11 \begin{array}{c}_2M M^{-1}_1 &&=&& \begin{pmatrix} 2 && 2 && 3 \end{pmatrix}\begin{pmatrix} -5\\ F \\ 2 \end{pmatrix}&&=&&-10 +2F+6 &&=&&0 \to && \boxed{F=2}\\ _2M M^{-1}_3 &&=&& \begin{pmatrix} 2 && 2 && 3 \end{pmatrix}\begin{pmatrix} -11\\ G \\ 4 \end{pmatrix}&&=&&-22 +2G+12 &&=&&0 \to && \boxed{G=5}\\ _1 M^{-1} M_2 &&=&& \begin{pmatrix} -5 && E && -11 \end{pmatrix}\begin{pmatrix} 1\\ 2 \\ 5 \end{pmatrix}&&=&&-5 +2E-55 &&=&&0 \to && \boxed{E=30}\\ _3 M^{-1} M_2 &&=&& \begin{pmatrix} 2 && H && 4 \end{pmatrix}\begin{pmatrix} 1\\ 2 \\ 5 \end{pmatrix}&&=&&2 +2H+20 &&=&&0 \to && \boxed{H=-11} \end{array} from this we have solved for M 1 M^{-1} , i.e M 1 = ( 5 30 11 2 13 5 2 11 4 ) M^{-1} = \begin{pmatrix} -5 & 30 & -11 \\ 2 & -13 & 5 \\ 2 & -11 & 4 \end{pmatrix} Now we solve for A , B , C , D A,B,C,D , which can be done as follows(note that other orders of equation would also work, there are many optimal solutions to this part): 1 M M 1 1 = ( A 1 B ) ( 5 2 2 ) = 5 A + 2 + 2 B = 1 1 M M 2 1 = ( A 1 B ) ( 30 13 11 ) = 30 A 13 11 B = 0 A = 3 , B = 7 1 M 1 M 1 = ( 5 30 11 ) ( 3 2 C ) = 15 + 60 11 C = 1 C = 4 1 M 1 M 3 = ( 5 30 11 ) ( 7 3 D ) = 35 + 90 11 D = 0 D = 5 \begin{array}{c}_1M M^{-1}_1 &&=&& \begin{pmatrix} A && 1 && B \end{pmatrix}\begin{pmatrix} -5\\ 2 \\ 2 \end{pmatrix}&&=&&-5A+2+2B &&=&& 1\to&& \\ _1M M^{-1}_2 &&=&& \begin{pmatrix} A && 1 && B \end{pmatrix}\begin{pmatrix} 30\\ -13 \\ -11 \end{pmatrix}&&=&&30A -13-11B &&=&&0 \to && \boxed{A=3,B=7}\\ _1 M^{-1} M_1 &&=&& \begin{pmatrix} -5 && 30 && -11 \end{pmatrix}\begin{pmatrix} 3\\ 2 \\ C \end{pmatrix}&&=&&-15 +60-11C &&=&&1 \to && \boxed{C=4}\\ _1 M^{-1} M_3 &&=&& \begin{pmatrix} -5 && 30 && -11 \end{pmatrix}\begin{pmatrix} 7\\ 3 \\ D \end{pmatrix}&&=&&-35 +90-11D &&=&&0 \to && \boxed{D=5} \end{array} of course, multiply the two matrices found to confirm that they are indeed inverses, as we skipped over some eqns.

Nice solution!

David Vreken - 1 year, 10 months ago

No need to solve for A , B , C , D A,B,C,D 's separately. Once you have obtained M 1 M^{-1} , just invert this matrix to recover the full M M .

Abhishek Sinha - 1 year, 10 months ago

Log in to reply

its faster to solve then to invert(by hand ofc).

Aareyan Manzoor - 1 year, 10 months ago

Log in to reply

With Matlab, inverting is faster than writing down the equations.

Abhishek Sinha - 1 year, 10 months ago

Log in to reply

@Abhishek Sinha Obviously, if we asked a computer to do it, its gonna be faster to invert. And honestly, that's what I did after I found the inverse of M when solving the problem. I added the equation parts to the solution because it's faster by hand, and technically even if both were done by a computer, the equations one would take slightly fewer steps.

Aareyan Manzoor - 1 year, 10 months ago
Chew-Seong Cheong
Jul 18, 2019

We note that M M 1 = I MM^{-1} = I , where I I is the identity matrix. Let the elements of I I be a i j a_{ij} . Then we have:

a 21 = 2 ( 5 ) + 2 F + 3 ( 2 ) = 0 F = 2 a 23 = 2 ( 11 ) + 2 G + 3 ( 4 ) = 0 G = 5 { a 11 = 5 A + 2 ( 1 ) + 2 B = 1 a 13 = 11 A + 5 ( 1 ) + 4 B = 0 { A = 3 B = 7 { a 31 = 5 C + 2 ( 5 ) + 2 D = 0 a 33 = 11 C + 5 ( 5 ) + 4 D = 1 { C = 4 D = 5 { a 12 = 3 E + 1 ( 13 ) + 7 H = 0 a 32 = 4 E + 5 ( 13 ) + 5 H = 0 { E = 30 H = 11 a_{21} = 2(-5) + 2F + 3(2) = 0 \implies F = 2 \\ a_{23} = 2(-11) + 2G + 3(4) = 0 \implies G = 5 \\ \begin{cases} a_{11} = -5A + 2(1) + 2B = 1 \\ a_{13} = -11A + 5(1) + 4B = 0 \end{cases} \implies \begin{cases} A = 3 \\ B = 7 \end{cases} \\ \begin{cases} a_{31} = -5C + 2(5) + 2D = 0 \\ a_{33} = -11C + 5(5) + 4D = 1 \end{cases} \implies \begin{cases} C = 4 \\ D = 5 \end{cases} \\ \begin{cases} a_{12} = 3E + 1(-13) + 7H = 0 \\ a_{32} = 4E + 5(-13) + 5H = 0 \end{cases} \implies \begin{cases} E = 30 \\ H = -11 \end{cases}

Therefore, A + B + C + D + E + F + G + H = 3 + 7 + 4 + 5 + 30 + 2 + 5 11 = 45 A+B+C+D+E+F+G+H = 3+7+4+5+30+2+5-11 = \boxed{45} .

Nice compact solution!

David Vreken - 1 year, 10 months ago

a + b + c + d + e + f + g + h /. Solve [ ( a 1 b 2 2 3 c 5 d ) . ( 5 e 11 f 13 g 2 h 4 ) = ( 1 0 0 0 1 0 0 0 1 ) ] 45 a+b+c+d+e+f+g+h\text{/.}\, \text{Solve}\left[\left( \begin{array}{ccc} a & 1 & b \\ 2 & 2 & 3 \\ c & 5 & d \\ \end{array} \right).\left( \begin{array}{ccc} -5 & e & -11 \\ f & -13 & g \\ 2 & h & 4 \\ \end{array} \right)=\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right)\right]\Rightarrow 45

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...