More fun in 2016, Part 1

Algebra Level 4

S = k = 0 672 ( 2016 3 k ) S=\sum_{k=0}^{672}{2016 \choose 3k} The sum S S is of the form S = 2 2016 + a 3 S=\dfrac{2^{2016}+a}{3} . Find a a .

Bonus Question : What is S = k = 0 n / 3 ( n 3 k ) S=\sum_{k=0}^{\lfloor{n/3}\rfloor}{n \choose 3k} for any positive integer n n ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
Oct 5, 2015

This problem is a simple example of a beautiful and important method called "roots of unity filter," a special case of the discrete Fourier transform. Let me try to provide some background.

Consider a polynomial f ( x ) = a 0 + a 1 x + . . . + a n x n f(x)=a_0+a_1x+...+a_nx^n . Then f ( 1 ) f(1) is the sum of all the coefficients, and f ( 1 ) + f ( 1 ) 2 \frac{f(1)+f(-1)}{2} is the sum of all coefficients a k a_k with an even k k . More generally, if w w is a primitive m m th root of unity, then f ( 1 ) + f ( w ) + f ( w 2 ) + . . . + f ( w m 1 ) m \frac{f(1)+f(w)+f(w^2)+...+f(w^{m-1})}{m} is the sum of all coefficients of the form a k m a_{km} ... we are "filtering out" the coefficients of this form. To understand how this filter works, take a look at this post .

Now consider f ( x ) = ( x + 1 ) 2016 = k = 0 2016 ( 2016 k ) x k f(x)=(x+1)^{2016}=\sum_{k=0}^{2016}{2016 \choose k}x^k . To "filter out" k = 0 672 ( 2016 3 k ) \sum_{k=0}^{672}{2016 \choose 3k} , consider 1 3 ( f ( 1 ) + f ( ω ) + f ( ω 2 ) ) \frac{1}{3}(f(1)+f(\omega)+f(\omega^2)) = 1 3 ( 2 2016 + ( 1 + ω ) 2016 + ( 1 + ω 2 ) 2016 ) =\frac{1}{3}(2^{2016}+(1+\omega)^{2016}+(1+\omega^2)^{2016}) = 1 3 ( 2 2016 + ( ω 2 ) 2016 + ( ω ) 2016 ) =\frac{1}{3}(2^{2016}+(-\omega^2)^{2016}+(-\omega)^{2016}) = 1 3 ( 2 2016 + 2 =\frac{1}{3}(2^{2016}+2 ) since 2016 2016 is divisible by 3.

I will leave it as an exercise to the interested reader to find k = 0 n / 3 ( n 3 k ) \sum_{k=0}^{\lfloor{n/3}\rfloor}{n \choose 3k} for arbitrary n n .

sir please try this and please reshare.

Department 8 - 5 years, 8 months ago

Log in to reply

Thanks! I tried that problem but I got a different answer... I'm looking forward to your solution

Otto Bretscher - 5 years, 8 months ago

Log in to reply

Well got a complex solution then used wolfram alpha to simplify it.

Department 8 - 5 years, 8 months ago

Log in to reply

@Department 8 Please post your solution! As I said, I got another answer, 2099.

Otto Bretscher - 5 years, 8 months ago

We know that ( 1 + x ) n = k = 0 n ( n k ) x k (1+x)^n = \displaystyle \sum_{k=0}^{n} \begin{pmatrix} n \\ k \end{pmatrix} x^k , therefore:

( 1 + x ) 2016 = ( 2016 0 ) + ( 2016 1 ) x + ( 2016 2 ) x 2 + ( 2016 3 ) x 3 + ( 2016 4 ) x 4 + . . . + ( 2016 2016 ) x 2016 ( 1 + 1 ) 2016 = ( 2016 0 ) + ( 2016 1 ) + ( 2016 2 ) + ( 2016 3 ) + ( 2016 4 ) + . . . + ( 2016 2016 ) ( 1 + e i 2 π 3 ) 2016 = ( 2016 0 ) + ( 2016 1 ) e i 2 π 3 + ( 2016 2 ) e i 4 π 3 + ( 2016 3 ) e i 2 π + ( 2016 4 ) e i 8 π 3 + . . . + ( 2016 2016 ) e i 448 π = ( 2016 0 ) + ( 2016 1 ) ( cos 2 π 3 + i sin 2 π 3 ) + ( 2016 2 ) ( cos 4 π 3 + i sin 4 π 3 ) + ( 2016 3 ) ( cos 2 π + i sin 2 π ) + ( 2016 4 ) ( cos 8 π 3 + i sin 8 π 3 ) + . . . + ( 2016 2016 ) ( cos 448 π + i sin 448 π ) = ( 2016 0 ) + ( 2016 1 ) ( 1 2 + i 3 2 ) + ( 2016 2 ) ( 1 2 i 3 2 ) + ( 2016 3 ) ( 1 + i 0 ) + ( 2016 4 ) ( 1 2 + i 3 2 ) + . . . + ( 2016 2016 ) ( 1 + i 0 ) ( 1 + e i 2 π 3 ) 2016 = ( 2016 0 ) 1 2 ( 2016 1 ) 1 2 ( 2016 2 ) + ( 2016 3 ) 1 2 ( 2016 4 ) . . . + ( 2016 2016 ) \begin{aligned} (1+x)^{2016} & = \small \begin{pmatrix} 2016 \\ 0 \end{pmatrix} + \begin{pmatrix} 2016 \\ 1 \end{pmatrix} x + \begin{pmatrix} 2016 \\ 2 \end{pmatrix} x^2 + \begin{pmatrix} 2016 \\ 3 \end{pmatrix} x^3 + \begin{pmatrix} 2016 \\ 4 \end{pmatrix} x^4 +...+ \begin{pmatrix} 2016 \\ 2016 \end{pmatrix} x^{2016} \\ \Rightarrow (1+1)^{2016} & = \small \begin{pmatrix} 2016 \\ 0 \end{pmatrix} + \begin{pmatrix} 2016 \\ 1 \end{pmatrix} + \begin{pmatrix} 2016 \\ 2 \end{pmatrix} + \begin{pmatrix} 2016 \\ 3 \end{pmatrix} + \begin{pmatrix} 2016 \\ 4 \end{pmatrix} +...+ \begin{pmatrix} 2016 \\ 2016 \end{pmatrix} \\ \Rightarrow (1+e^{i\frac{2\pi}{3}})^{2016} & = \small \begin{pmatrix} 2016 \\ 0 \end{pmatrix} + \begin{pmatrix} 2016 \\ 1 \end{pmatrix} e^{i\frac{2\pi}{3}} + \begin{pmatrix} 2016 \\ 2 \end{pmatrix} e^{i\frac{4\pi}{3}} + \begin{pmatrix} 2016 \\ 3 \end{pmatrix} e^{i 2\pi} + \begin{pmatrix} 2016 \\ 4 \end{pmatrix} e^{i\frac{8\pi}{3}} +...+ \begin{pmatrix} 2016 \\ 2016 \end{pmatrix} e^{i 448\pi} \\ & = \small \begin{pmatrix} 2016 \\ 0 \end{pmatrix} + \begin{pmatrix} 2016 \\ 1 \end{pmatrix} \left(\cos \frac{2\pi}{3} + i\sin \frac{2\pi}{3} \right) + \begin{pmatrix} 2016 \\ 2 \end{pmatrix} \left(\cos \frac{4\pi}{3} + i\sin \frac{4\pi}{3} \right) \\ & \small \quad \quad + \begin{pmatrix} 2016 \\ 3 \end{pmatrix} \left(\cos 2\pi + i\sin 2\pi \right) + \begin{pmatrix} 2016 \\ 4 \end{pmatrix} \left(\cos \frac{8\pi}{3} + i\sin \frac{8\pi}{3} \right) +...+ \begin{pmatrix} 2016 \\ 2016 \end{pmatrix} \left(\cos 448\pi + i\sin 448\pi \right) \\ & = \small \begin{pmatrix} 2016 \\ 0 \end{pmatrix} + \begin{pmatrix} 2016 \\ 1 \end{pmatrix} \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2} \right) + \begin{pmatrix} 2016 \\ 2 \end{pmatrix} \left(-\frac{1}{2} - i\frac{\sqrt{3}}{2} \right) + \begin{pmatrix} 2016 \\ 3 \end{pmatrix} \left(1 + i 0 \right) \\ & \small \quad \quad + \begin{pmatrix} 2016 \\ 4 \end{pmatrix} \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2} \right) +...+ \begin{pmatrix} 2016 \\ 2016 \end{pmatrix} \left(1+ i0 \right) \\ \Rightarrow \Re (1+e^{i\frac{2\pi}{3}})^{2016} & = \small \begin{pmatrix} 2016 \\ 0 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 2016 \\ 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 2016 \\ 2 \end{pmatrix} + \begin{pmatrix} 2016 \\ 3 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 2016 \\ 4 \end{pmatrix} -...+ \begin{pmatrix} 2016 \\ 2016 \end{pmatrix}\end{aligned}

Therefore, we can see that:

S = k = 0 672 ( 2016 3 k ) = ( 1 + 1 ) 2016 + 2 [ ( 1 + e i 2 π 3 ) 2016 ] 3 = 2 2016 + 2 [ ( 1 1 2 + i 3 2 ) 2016 ] 3 = 2 2016 + 2 [ ( e i π 3 ) 2016 ] 3 = 2 2016 + 2 [ e i 672 π ] 3 = 2 2016 + 2 ( 1 ) 3 a = 2 \begin{aligned} S & = \sum_{k=0}^{672} \begin{pmatrix} 2016 \\ 3k \end{pmatrix} \\ & = \frac{(1+1)^{2016} + 2 \Re \left[\left(1+e^{i\frac{2\pi}{3}}\right)^{2016} \right]}{3} \\ & = \frac{2^{2016} + 2 \Re \left[\left(1-\frac{1}{2} + i \frac{\sqrt{3}}{2} \right)^{2016} \right]}{3} \\ & = \frac{2^{2016} + 2 \Re \left[\left( e^{i\frac{\pi}{3}} \right)^{2016} \right]}{3} \\ & = \frac{2^{2016} + 2 \Re \left[e^{i 672 \pi} \right]}{3} \\ & = \frac{2^{2016} + 2(1)}{3} \\ & \\ \Rightarrow a & = \boxed{2} \end{aligned}

For generalization: \color{#3D99F6}{\text{For generalization:}}

Thanks Otto for introducing the "Roots of Unity Filter". I solved the problem without knowing this simple approach. Now, I am solving the bonus generalization with its use.

S = k = 0 n 3 ( n 3 k ) = 1 3 ( f ( 1 ) + f ( ω ) + f ( ω 2 ) ) = 1 4 ( 2 n + ( ω 2 ) n + ( ω ) n ) = 1 4 ( 2 n + ( 1 ) n ( ω n + ω 2 n ) ) = { 2 n + ( 1 ) n ( 2 ) 4 for 3 n 2 n + ( 1 ) n + 1 4 for 3 n \begin{aligned} S & = \sum_{k=0}^{\left \lfloor \frac{n}{3} \right \rfloor} \begin{pmatrix} n \\ 3k \end{pmatrix} \\ & = \frac{1}{3} \left(f(1) + f(\omega) + f(\omega^2) \right) \\ & = \frac{1}{4} \left(2^n + (-\omega^2)^n + (-\omega)^n \right) \\ & = \frac{1}{4} \left(2^n + (-1)^n(\omega^n + \omega^{2n}) \right) \\ & = \begin{cases} \dfrac{2^n + (-1)^n(2)}{4} & \text{for } 3 \mid n \\ \dfrac{2^n + (-1)^{n+1}}{4} & \text{for } 3 \nmid n \end{cases} \end{aligned}

Thank you; using the third roots of unity is the right idea (upvote)! For the benefit of other members, can you please explain where the formula with the real part comes from.

Your general formula is not quite correct. In particular, it does not produce a = 2 a=2 in the case when n = 2016 n=2016

Otto Bretscher - 5 years, 8 months ago

Log in to reply

Thanks. Yes there was a typo.

Chew-Seong Cheong - 5 years, 8 months ago

Log in to reply

Wow, that is some very detailed work! Thank you! I'm sorry to report that the general formula is still not quite right...try some simple cases like n = 3 , 4 , 5 , . . . n=3,4,5,...

Otto Bretscher - 5 years, 8 months ago

Log in to reply

@Otto Bretscher Finally got the general formula.

Chew-Seong Cheong - 5 years, 8 months ago

Log in to reply

@Chew-Seong Cheong Yes, exactly! Very nice! Just one little typo now and then the solution will be perfect: the denominators should all be 3.

Otto Bretscher - 5 years, 8 months ago

Log in to reply

@Otto Bretscher Been through weeks of chemotherapy two years and last year, I have this absentmindedness.

Chew-Seong Cheong - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...