More fun in 2016, Part 11

Geometry Level 5

k = 1 32 tan 2 ( ( 2 k 1 ) π 128 ) = ? \sum_{k=1}^{32}\tan^2\left(\frac{(2k-1)\pi}{128}\right) = \, ?


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
Jan 10, 2016

I used an approach similar to Comrade Pi Han Goh's, but with some variations. We will show that S ( n ) = k = 0 n 1 tan 2 ( k π 2 n ) = ( n 1 ) ( 2 n 1 ) 3 S(n)=\sum_{k=0}^{n-1}\tan^2\left(\frac{k\pi}{2n}\right)=\frac{(n-1)(2n-1)}{3}

The sum we seek is S ( 64 ) S ( 32 ) = 2016 S(64)-S(32)=\boxed{2016} .

To derive the formula for S ( n ) S(n) , consider the equation ( e k π i 2 n ) 2 n = ( 1 ) k \left(e^{\frac{k\pi i}{2n}}\right)^{2n}=(-1)^k , expand the LHS in terms of cos and sin, take the imaginary part, and divide by cos 2 ( k π 2 n ) \cos^2(\frac{k\pi}{2n}) to find j = 0 n 1 ( 2 n 2 j + 1 ) ( i tan ( k π 2 n ) ) 2 n 2 j = 0 \sum_{j=0}^{n-1}{2n \choose 2j+1}(i\tan(\frac{k\pi}{2n}))^{2n-2j}=0 or j = 0 n 1 ( 2 n 2 j + 1 ) ( tan 2 ( k π 2 n ) ) n j = 0 \sum_{j=0}^{n-1}{2n \choose 2j+1}(-\tan^2(\frac{k\pi}{2n}))^{n-j}=0 . Thus we have found a polynomial, j = 0 n 1 ( 2 n 2 j + 1 ) ( 1 ) n j x n j \sum_{j=0}^{n-1}{2n \choose 2j+1}(-1)^{n-j}x^{n-j} whose roots are tan 2 ( k π 2 n ) \tan^2(\frac{k\pi}{2n}) for k = 0 , . . n 1 k=0,..n-1 . By Viete, the sum of these roots is S ( n ) = ( 2 n 3 ) ( 2 n 1 ) = ( n 1 ) ( 2 n 1 ) 3 S(n)=\frac{{2n \choose 3}}{{2n \choose 1}}=\frac{(n-1)(2n-1)}{3}

Moderator note:

That is a good way to find polynomials whose roots have a nice trigonometric interpretation.

You do realise that the answer is in the title.

Joel Yip - 5 years ago

Log in to reply

Yes, of course....otherwise the title would not make any sense ;)

Otto Bretscher - 5 years ago
Pi Han Goh
Jan 10, 2016

Synopsis : We rearrange the terms and notice that the tangent of all 32 × 2 = 64 32\times2=64 angles of are undefined. Then we take advantage of the fact that tan ( 64 x ) \tan(64x) is undefined at all these 64 angles. We apply the generalized compound angle formula and Vieta's formula to finish it off.


Let P P denote the sum in question, we apply one of the trigonometric periodicity identities : tan ( x ) = tan ( π x ) tan 2 ( x ) = tan 2 ( π x ) \tan(x) = - \tan(\pi - x) \Rightarrow \tan^2(x) = \tan^2(\pi - x) . Then,

P = k = 1 32 tan 2 ( π ( 2 k 1 ) π 128 ) = k = 1 32 tan 2 ( ( 129 2 k ) π 128 ) = k = 33 64 tan 2 ( ( 2 k 1 ) π 128 ) P + P = k = 1 32 tan 2 ( ( 2 k 1 ) π 128 ) + k = 33 64 tan 2 ( ( 2 k 1 ) π 128 ) 2 P = k = 1 64 tan 2 ( ( 2 k 1 ) π 128 ) \begin{aligned} P &=& \sum_{k=1}^{32} \tan^2 \left( \pi - \dfrac{(2k-1)\pi}{128} \right) = \sum_{k=1}^{32} \tan^2 \left( \dfrac{(129-2k)\pi}{128} \right) = \sum_{k=33}^{64} \tan^2 \left( \dfrac{(2k-1)\pi}{128} \right) \\ P+P &=& \sum_{k=1}^{32} \tan^2 \left(\dfrac{(2k-1)\pi}{128} \right) + \sum_{k=33}^{64} \tan^2 \left( \dfrac{(2k-1)\pi}{128} \right) \\ 2P &=& \sum_{k=1}^{64} \tan^2 \left( \dfrac{(2k-1)\pi}{128} \right) \end{aligned}

Note that for k = 1 , 2 , 3 , , 64 k = 1,2,3,\ldots,64 , the value of tan ( 64 ( 2 k 1 ) π 128 ) \tan \left( 64 \cdot \dfrac{(2k-1)\pi}{128} \right) is undefined. So we're interested to construct a expression for tan ( 64 x ) \tan(64x) such that when it is expressed in its simplest fraction form, the denominator is equal to 0.

Now, for the generalized compound angle formula for the tangent function (currently not in the wiki provided):

tan ( 64 x ) = e 1 e 3 + e 5 e 63 1 e 2 + e 4 + e 64 \tan(64x) = \dfrac{e_1 - e_3 + e_5 - \cdots - e_{63}}{1 - e_2 + e_4 -\cdots + e_{64}}

where e m e_m denote the m th m^\text{th} symmetric sum of tan ( ( 2 k 1 ) π 128 ) \tan \left( \dfrac{(2k-1)\pi}{128} \right) , where k = 1 , 2 , 3 , , 64 k = 1,2,3,\ldots,64 . Knowing that e m = ( 64 m ) ( tan x ) m e_m= \dbinom {64}{m} (\tan x)^m , and we're only interested in the denominator,

0 = 1 ( 64 2 ) tan 2 x + ( 64 4 ) tan 4 x ( 64 62 ) tan 62 x + ( 64 64 ) tan 64 x . 0 = 1 - \dbinom{64}2 \tan^2 x + \dbinom{64}4 \tan^4x - \cdots - \dbinom{64}{62} \tan^{62}x + \dbinom{64}{64} \tan^{64}x.

By Vieta's formula ,

2 P = k = 1 64 tan 2 ( ( 2 k 1 ) π 128 ) 2 P = [ k = 1 64 tan ( ( 2 k 1 ) π 128 ) ] 2 2 [ 1 j < k 64 64 tan ( ( 2 j 1 ) π 128 ) tan ( ( 2 k 1 ) π 128 ) ] 2 P = = ( 0 ) 2 2 [ ( 64 62 ) ] = 64 63 P = 32 63 = 2016 . \begin{aligned} 2P &=&\sum_{k=1}^{64} \tan^2 \left( \dfrac{(2k-1)\pi}{128} \right) \\ 2P &= & \left[ \sum_{k=1}^{64} \tan \left( \dfrac{(2k-1)\pi}{128} \right) \right]^2 - 2 \left[ \sum_{1\leq j<k\leq64}^{64} \tan\left( \dfrac{(2j-1)\pi}{128} \right) \tan \left( \dfrac{(2k-1)\pi}{128} \right) \right] \\ 2P &=& = (-0)^2 - 2 \cdot \left[ - \dbinom{64}{62} \right] = 64 \cdot 63 \\ P &=& 32 \cdot 63 = \boxed{2016}. \end{aligned}

Moderator note:

Good approach taken.

Yes, this looks like a solid approach! (+1)

I did it in a similar way, with slight variations. My approach is to show that S ( n ) = k = 0 n 1 tan 2 ( k π 2 n ) = ( n 1 ) ( 2 n 1 ) 3 S(n)=\sum_{k=0}^{n-1}\tan^2\left(\frac{k\pi}{2n}\right)=\frac{(n-1)(2n-1)}{3}

The sum we seek is then S ( 64 ) S ( 32 ) = 2016 S(64)-S(32)=\boxed{2016} .

To derive the formula for S ( n ) S(n) , consider the equation ( e k π i 2 n ) 2 n = ( 1 ) k \left(e^{\frac{k\pi i}{2n}}\right)^{2n}=(-1)^k , expand the LHS in terms of cos and sin, take the imaginary part, and divide by cos 2 ( k π 2 n ) \cos^2(\frac{k\pi}{2n}) to find j = 0 n 1 ( 2 n 2 j + 1 ) ( i tan ( k π 2 n ) ) 2 n 2 j = 0 \sum_{j=0}^{n-1}{2n \choose 2j+1}(i\tan(\frac{k\pi}{2n}))^{2n-2j}=0 or j = 0 n 1 ( 2 n 2 j + 1 ) ( tan 2 ( k π 2 n ) ) n j = 0 \sum_{j=0}^{n-1}{2n \choose 2j+1}(-\tan^2(\frac{k\pi}{2n}))^{n-j}=0 . Thus we have found a polynomial, j = 0 n 1 ( 2 n 2 j + 1 ) ( 1 ) n j x n j \sum_{j=0}^{n-1}{2n \choose 2j+1}(-1)^{n-j}x^{n-j} whose roots are tan 2 ( k π 2 n ) \tan^2(\frac{k\pi}{2n}) for k = 0 , . . n 1 k=0,..n-1 . By Viete, the sum of these roots is S ( n ) = ( 2 n 3 ) ( 2 n 1 ) = ( n 1 ) ( 2 n 1 ) 3 S(n)=\frac{{2n \choose 3}}{{2n \choose 1}}=\frac{(n-1)(2n-1)}{3}

Otto Bretscher - 5 years, 5 months ago

Log in to reply

Another roots of unity solution? Please post solution! haha

Pi Han Goh - 5 years, 5 months ago

Log in to reply

I expanded my solution above, skipping a few routine steps though... hope that will suffice

Otto Bretscher - 5 years, 5 months ago

Log in to reply

@Otto Bretscher You should post that as a solution, not as a comment.

Pi Han Goh - 5 years, 5 months ago

Log in to reply

@Pi Han Goh ok will do if you insist, Comrade

Otto Bretscher - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...