Too many Logs

Calculus Level 3

n = 2 1 ( ln n ) ln ( ln n ) \large \sum_{n=2}^\infty \dfrac1{ ( \ln n)^{\ln (\ln n) } }

Does the series above converge or diverge?

Hint : For x 2 x\geq 2 , ln ( x ) < x \ln(x) < \sqrt x .

Diverges Converges

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We know that, ( l n ( n ) ) l n ( l n ( n ) ) = e l n ( l n ( n ) ) l n ( l n ( n ) ) = e [ l n ( l n ( n ) ) ] 2 { \left( ln\left( n \right) \right) }^{ ln\left( ln\left( n \right) \right) }={ e }^{ { ln\left( ln\left( n \right) \right) }^{ ln\left( ln\left( n \right) \right) } }={ e }^{ { \left[ ln\left( ln\left( n \right) \right) \right] }^{ 2 } }

and according to the hint, l n ( l n ( n ) ) < l n ( n ) ln\left( ln\left( n \right) \right) <\sqrt { ln\left( n \right) }

1 e [ l n ( l n ( n ) ) ] 2 > 1 e l n ( n ) = 1 n \frac { 1 }{ { e }^{ { \left[ ln\left( ln\left( n \right) \right) \right] }^{ 2 } } } >\frac { 1 }{ { e }^{ ln\left( n \right) } } =\frac { 1 }{ n }

Since 2 1 n \sum _{ 2 }^{ \infty }{ \frac { 1 }{ n } } diverges, so does 2 1 ( l n ( n ) ) l n ( l n ( n ) ) \sum _{ 2 }^{ \infty }{ \frac { 1 }{ { \left( ln\left( n \right) \right) }^{ ln\left( ln\left( n \right) \right) } } } .

Moderator note:

Good observation that ( ln n ) ln ln n < n \left( \ln n \right) ^ { \ln \ln n } < n .

How can one prove the hint that you gave?

Jake Lai
Dec 24, 2015

n = n 0 f ( n ) \displaystyle \sum_{n=n_0}^\infty f(n) converges iff n 0 f ( x ) d x \displaystyle \int_{n_0}^\infty f(x) \ dx converges. We shall consider f ( x ) = 1 ( ln x ) ln ln x f(x) = \dfrac{1}{(\ln x)^{\ln \ln x}} .

3 1 ( ln x ) ln ln x d x = ln 3 1 u ln u d u 1 / e u = ln 3 e u ln 2 u d u ln 3 e u u / 2 d u ( u / 2 ln 2 u when u > > 0 ) ln 3 e u / 2 d u \begin{aligned} \int_3^\infty \frac{1}{(\ln x)^{\ln \ln x}} \ dx &= \int_{\ln 3}^\infty \frac{1}{u^{\ln u}} \ \frac{du}{1/e^u} \\ &= \int_{\ln 3}^\infty e^{u-\ln^2u} \ du \\ &\geq \int_{\ln 3}^\infty e^{u-u/2} \ du \qquad (u/2 \geq \ln^2u \text{ when } u >> 0) \\ &\geq \int_{\ln 3}^\infty e^{u/2} \ du \\ \end{aligned}

The integral diverges, and therefore so does the sum.

The integral test can only be applied if you've shown that the integrand is continuous, positive and decreasing.

Pi Han Goh - 5 years, 5 months ago

Log in to reply

It is obvious f f is continuous.

Let x y 3 x \geq y \geq 3 . Then clearly ln ln x ln ln y \ln \ln x \geq \ln \ln y , and so [ ln ln x ] 2 [ ln ln y ] 2 [\ln \ln x]^2 \geq [\ln \ln y]^2 , which means that e [ ln ln x ] 2 e [ ln ln y ] 2 e^{-[\ln \ln x]^2} \leq e^{-[\ln \ln y]^2} . Since f ( z ) = e [ ln ln z ] 2 f(z) = e^{-[\ln \ln z]^2} , and e x > 0 e^x > 0 for all real x, this shows that f f is both positive and decreasing.

Is this correct? Thanks for helping me ensure the rigour of my solution :)

Jake Lai - 5 years, 5 months ago

Log in to reply

Actually, you should start off with x y 3 x \geq y \geq 3 . Do you know why?

Calvin Lin Staff - 5 years, 5 months ago

Log in to reply

@Calvin Lin Right, because it is possible that ln ln z \ln \ln z is negative between 2 and e.

Jake Lai - 5 years, 5 months ago

Log in to reply

@Jake Lai Right, in particular, even though ln ( ln 2 ) < ln ( ln 3 ) \ln (\ln 2) < \ln (\ln 3 ) , we have [ ln ( ln 2 ) ] 2 > [ ln ( ln 3 ) ] 2 [ \ln (\ln 2) ]^2 > [ \ln (\ln 3) ] ^2 .

Calvin Lin Staff - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...