Find the floor

Algebra Level 4

If the general term of a series is T n = ( n 4 + 3 n 3 + 6 n 2 + 3 n + 1 ) n ! T_n=(n^4+3n^3+6n^2+3n+1)n! and if n = 1 30 T n = S \sum_{n=1}^{30} T_n=S then find S 31 1 0 36 \large \lfloor \frac{S}{31*10^{36}} \rfloor


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ayush Verma
Nov 22, 2014

T n n ! = ( n 4 + 3 n 3 + 6 n 2 + 3 n + 1 ) = ( n + 4 ) ( n + 3 ) ( n + 2 ) ( n + 1 ) 7 ( n + 3 ) ( n + 2 ) ( n + 1 ) + 13 ( n + 2 ) ( n + 1 ) 9 ( n + 1 ) + 2 T n = ( n + 4 ) ! 7 ( n + 3 ) ! + 13 ( n + 2 ) ! 9 ( n + 1 ) ! + 2 n ! = { ( n + 4 ) ! ( n + 3 ) ! } 6 { ( n + 3 ) ! ( n + 2 ) ! } + 7 { ( n + 2 ) ! ( n + 1 ) ! } 2 { ( n + 1 ) ! n ! } \cfrac { { T }_{ n } }{ n! } =\left( { n }^{ 4 }+3{ n }^{ 3 }+6{ n }^{ 2 }+3n+1 \right) \\ \\ \quad \quad \quad =\left( n+4 \right) \left( n+3 \right) \left( n+2 \right) \left( n+1 \right) -7\left( n+3 \right) \left( n+2 \right) \left( n+1 \right) +13\left( n+2 \right) \left( n+1 \right) -9\left( n+1 \right) +2\\ \\ \Rightarrow { T }_{ n }=\left( n+4 \right) !-7\left( n+3 \right) !+13\left( n+2 \right) !-9\left( n+1 \right) !+2n!\\ \\ \quad \quad =\left\{ \left( n+4 \right) !-\left( n+3 \right) ! \right\} -6\left\{ \left( n+3 \right) !-\left( n+2 \right) ! \right\} +7\left\{ \left( n+2 \right) !-\left( n+1 \right) ! \right\} -2\left\{ \left( n+1 \right) !-n! \right\}

this is telescoping,

S = ( 34 ! 4 ! ) 6 ( 33 ! 3 ! ) + 7 ( 32 ! 2 ! ) 2 ( 31 ! 1 ! ) \therefore S=\left( 34!-4! \right) -6\left( 33!-3! \right) +7\left( 32!-2! \right) -2\left( 31!-1! \right)

Now use calculator,

S = 2.449583635 × 10 38 A n s = 7.90188 = 7 S=2.449583635\times { 10 }^{ 38 }\\ \\ Ans=\left\lfloor 7.90188 \right\rfloor =7

Another way of approaching this question could be to know that T n = [ ( ( n + 1 ) 3 1 ) ( n + 1 ) ! ( n 3 1 ) n ! ] T_n=[((n+1)^3-1)(n+1)!-(n^3-1)n!] Now the series can easily be telescoped to get the result.

@Pranjal Jain @Ayush Verma @sandeep Rathod

Sanjeet Raria - 6 years, 6 months ago

Log in to reply

I like Ayush's method, as it easily generalizes and shows us how to deal with f ( n ) n ! \sum f(n) n! for some polynomial f ( n ) f(n) . It doesn't involve trying to spot a "magical" equation, but shows us how we can derive it.

Calvin Lin Staff - 6 years, 6 months ago

Log in to reply

Ayush's method is brilliant no doubt in that but the equation I've written down is not magical since everyone can reach it in a more generalized and simple way. I am going to explain this in my upcoming note.

Sanjeet Raria - 6 years, 6 months ago

Log in to reply

@Sanjeet Raria I look forward to learning about that! It will help such telescoping sums to be able to quickly figure out how to get f ( n ) = g ( n + 1 ) g ( n ) f(n) = g (n+1) - g(n) .

Calvin Lin Staff - 6 years, 6 months ago

Log in to reply

@Calvin Lin Exactly sir.

Sanjeet Raria - 6 years, 6 months ago

( n 4 + 3 n 3 + 6 n 2 + 3 n + 1 ) n ! (n^4+3n^3+6n^2+3n+1)n!

= ( n 4 + 4 n 3 + 6 n 2 + 4 n + 1 n 3 n ) n ! =(n^4+4n^3+6n^2+4n+1-n^3-n)n!

= ( n + 1 ) 4 n ! ( n 3 ) n ! ( n ) n ! =(n+1)^4n!-(n^3)n!-(n)n!

= ( n + 1 ) 3 ( n + 1 ) n ! ( n 3 ) n ! ( n + 1 1 ) n ! =(n+1)^3(n+1)n!-(n^3)n!-(n+1-1)n!

= ( n + 1 ) 3 ( n + 1 ) ! ( n 3 ) n ! ( n + 1 ) n ! + n ! =(n+1)^3(n+1)!-(n^3)n!-(n+1)n!+n!

= ( ( n + 1 ) 3 ( n + 1 ) ! ( n + 1 ) ! ) ( ( n 3 ) n ! n ! ) =((n+1)^3(n+1)!-(n+1)!)-((n^3)n!-n!)

= ( ( n + 1 ) 3 1 ) ( n + 1 ) ! ) ( ( n 3 1 ) n ! ) =((n+1)^3-1)(n+1)!)-((n^3-1)n!)

g ( n ) = ( n 3 1 ) n ! g(n)=(n^3-1)n!

John Frank - 4 years, 9 months ago

How can someone think of telescoping here?? Awesome!!

Pranjal Jain - 6 years, 6 months ago

Log in to reply

That is quite natural in the context of this question. You may be familiar with the case of i × i ! = ( n + 1 ) ! 1 \sum i \times i ! = (n+1) ! -1 . This is often done with induction, but the better approach is to use telescoping series and recognize it as i × i ! = [ ( i + 1 ) ! i ! ] = ( n + 1 ) ! 1 ! \sum i \times i! = \sum [ (i+1)! - i!] = (n+1) ! - 1! .

Hence, we want to do something similar. The easiest way to generalize it to to look at ( ( i + 2 ) ! ( i + 1 ) ! = ( i + 1 ) 2 × i ! \sum ( (i+2)! - (i+1)! = \sum ( i+1) ^2 \times i! . This gives a way to motivate the rest of the proof.

Calvin Lin Staff - 6 years, 6 months ago

Log in to reply

Nicely explained! Thanks! You too @Ayush Verma

Pranjal Jain - 6 years, 6 months ago

Hats off . Upvoted

This image is copied from John Muradeli comment

U Z - 6 years, 6 months ago

I appreciate your talent. Outstanding.

Sanjeet Raria - 6 years, 6 months ago

Log in to reply

THANKS,SIR

Ayush Verma - 6 years, 6 months ago

Sir how did you factorized it? @Ayush Verma

sandeep Rathod - 6 years, 6 months ago

Log in to reply

Method 1

( n 4 + 3 n 3 + 6 n 2 + 3 n + 1 ) n ! = { n 3 ( n + 1 ) + 2 n 2 ( n + 1 ) + 4 n ( n + 1 ) ( n + 1 ) + 2 } n ! = { n 2 ( n + 2 ) + 4 ( n + 2 ) 9 } ( n + 1 ) ! + 2 n ! = { n ( n + 3 ) 3 ( n + 3 ) + 13 } ( n + 2 ) ! 9 ( n + 1 ) ! + 2 n ! = { ( n + 4 ) 7 } ( n + 3 ) ! + 13 ( n + 2 ) ! 9 ( n + 1 ) ! + 2 n ! = ( n + 4 ) ! 7 ( n + 3 ) ! + 13 ( n + 2 ) ! 9 ( n + 1 ) ! + 2 n ! \left( { n }^{ 4 }+{ 3n }^{ 3 }+6{ n }^{ 2 }+3n+1 \right) n!\\ \\ =\left\{ { n }^{ 3 }\left( n+1 \right) +2{ n }^{ 2 }\left( n+1 \right) +4n\left( n+1 \right) -\left( n+1 \right) +2 \right\} n!\\ \\ =\left\{ { n }^{ 2 }\left( n+2 \right) +4\left( n+2 \right) -9 \right\} \left( n+1 \right) !+2n!\\ \\ =\left\{ n\left( n+3 \right) -3\left( n+3 \right) +13 \right\} \left( n+2 \right) !-9\left( n+1 \right) !+2n!\\ \\ =\left\{ \left( n+4 \right) -7 \right\} \left( n+3 \right) !+13\left( n+2 \right) !-9\left( n+1 \right) !+2n!\\ \\ =\left( n+4 \right) !-7\left( n+3 \right) !+13\left( n+2 \right) !-9\left( n+1 \right) !+2n!

Method 2

( n 4 + 3 n 3 + 6 n 2 + 3 n + 1 ) = A ( n + 4 ) ( n + 3 ) ( n + 2 ) ( n + 1 ) + B ( n + 3 ) ( n + 2 ) ( n + 1 ) + C ( n + 2 ) ( n + 1 ) + D ( n + 1 ) + E C o m p a r e t h e c o e f f i c i e n t o f n 4 , n 3 , n 2 , n , 1 & s o l v e f o r A , B , C , D & E \left( { n }^{ 4 }+{ 3n }^{ 3 }+6{ n }^{ 2 }+3n+1 \right) \\ \\ =A\left( n+4 \right) \left( n+3 \right) \left( n+2 \right) \left( n+1 \right) \\ \\ +B\left( n+3 \right) \left( n+2 \right) \left( n+1 \right) \\ \\ +C\left( n+2 \right) \left( n+1 \right) \\ \\ +D\left( n+1 \right) +E\\ \\ Compare\quad the\quad coefficient\quad of\quad { n }^{ 4 },{ n }^{ 3 },{ n }^{ 2 },n,1\quad \\ \\ \& \quad solve\quad for\quad A,B,C,D\& E

Ayush Verma - 6 years, 6 months ago

Log in to reply

Really nice greatly done

sandeep Rathod - 6 years, 6 months ago

Actually It is 7.9018827

Shashank Rustagi - 5 years, 12 months ago

Killed it!!!!!! One of the best solutions I have seen over here...

Surya Sharma - 5 years, 3 months ago

Log in to reply

Thanks,Surya.

Ayush Verma - 5 years, 3 months ago

Floor{(1/(31×10^36))×{sum (n! (n^4+3n^3+6n^2+3n+1)), n=1 to 30}}

=7 WolframAlpha

Harout G. Vartanian - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...