My First Problem

Calculus Level 5

I 1 = 0 1 x 5 ( 1 x ) 5 d x = 1 a \mathfrak{I}_1=\int_0^1x^5(1-x)^5\, dx=\dfrac{1}{a} Then a 4 12 = R \dfrac{\left\lfloor \sqrt{a}\right\rfloor}{4}-12=\color{#D61F06}{R}

I 2 = lim n ( 1 2 + 2 2 + + n 2 ) ( 1 4 + 2 4 + + n 4 ) ( 1 7 + 2 7 + + n 7 ) = I S \mathfrak{I}_2 =\lim_{n\rightarrow\infty}\dfrac{(1^2+2^2+\cdots+n^2)(1^4+2^4+\cdots+n^4)}{(1^7+2^7+\cdots+n^7)}=\color{#D61F06}{\dfrac{I}{S}}

I 3 = π 3 π 3 ( π + 1996 ϕ 1997 2 cos ( ϕ + π 3 ) ) d ϕ \mathfrak{I}_3=\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\left(\dfrac{\pi+ 1996\phi^{1997}}{2-\cos(|\phi|+\frac{\pi}{3})}\right)\, d\phi such that I 3 \mathfrak{I}_3 can be represented as H 1 π A tan 1 ( B H 2 ) \color{#D61F06}{\dfrac{H_1\pi}{\sqrt A}\tan^{-1} \left(\dfrac{B}{H_2}\right)}

Find:- R × I × S × H 1 × A × B × H 2 5 \color{#D61F06}{\sqrt{\dfrac{R\times I\times S\times H_1 \times A\times B\times H_2}{5}}}


a , R , I , S , H 1 , A , B , H 2 Z a,R,I,S,H_1,A,B,H_2~\in \mathbb Z B B and H 2 H_2 ; I I and S S are coprime and A A is square free.
x \lfloor x\rfloor represents floor function while x |x| represents modulus function.


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Mar 9, 2016

For calculating I 1 \mathfrak{I}_1 do the substitution x = sin 2 θ x=\sin^2\theta such that d x = sin 2 θ d θ dx=\sin 2\theta d\theta and integral transforms to:- 0 π 2 s i n 10 θ ( 1 sin 2 θ ) 5 sin 2 θ d θ \int_0^{\frac{\pi}{2}} sin^{10}\theta (1-\sin^2\theta)^5 \sin 2\theta d\theta = 2 0 π sin 11 θ cos 11 θ =2\int_{0}^{\pi}\sin^{11}\theta\cos^{11}\theta Now recalling Beta Functions \Large{*} : I 1 = B ( 6 , 6 ) = 5 ! × 5 ! 11 ! = 1 2772 \mathfrak{I}_1=B(6,6)=\dfrac{5!\times 5!}{11!}=\dfrac{1}{2772} Hence:- 2772 13 12 = 1 \lfloor\dfrac{\sqrt{2772}}{13}\rfloor-12=\color{#D61F06}{1}

Write I 2 \mathfrak{I}_2 as:- lim n 1 n ( ( r = 1 ( r n ) 2 ) ( r = 1 ( r n ) 4 ) r = 1 ( r n ) 7 ) \lim_{n\to \infty}\dfrac{1}{n}\left(\dfrac{\left(\displaystyle\sum_{r=1}^{\infty}\left(\frac rn\right)^2\right)\left(\displaystyle\sum_{r=1}^{\infty}\left(\frac rn\right)^4\right)}{\displaystyle\sum_{r=1}^{\infty}\left(\frac rn\right)^7 }\right) and apply Reimann Sums to get : I 2 = ( 0 1 x 2 d x ) ( 0 1 x 4 d x ) ( 0 1 x 7 d x ) \mathfrak{I}_2= \dfrac{(\int_0^1x^2 dx)(\int_0^1x^4 dx)}{(\int_0^1x^7 dx)}

= ( 1 3 ) ( 1 5 ) ( 1 8 ) = 8 15 =\dfrac{(\frac 13)(\frac 15)}{(\frac 18)}=\color{#D61F06}{\dfrac{8}{15}} For I 3 \mathfrak{I_3} , apply a a f ( x ) d x = 2 0 a f ( x ) d x \int_{-a}^a f(x)dx=2\int_{0}^af(x)dx if f ( x ) f(x) is an even function and a a f ( x ) d x = 0 \int_{-a}^a f(x)dx=0 if f ( x ) f(x) is a odd function. I 3 = 2 0 π 3 ( π 2 cos ( ϕ + π 3 ) ) d ϕ + π 3 π 3 ( 1996 ϕ 1997 2 cos ( ϕ + π 3 ) ) d ϕ \mathfrak{I}_3=2\int_{0}^{\frac{\pi}{3}} \left(\dfrac{\pi}{2-\cos(\phi +\frac{\pi}{3})}\right)d\phi+\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\left(\dfrac{1996\phi^{1997}}{2-\cos(|\phi|+\frac{\pi}{3})}\right)\, d\phi = 2 π π 3 2 π 3 d ϕ 2 cos ϕ + 0 =2\pi\int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \dfrac{d\phi}{2-\cos \phi}+0 Now substitute tan ϕ 2 = x \tan \frac{\phi}2=x and use c o s ϕ = 1 tan 2 ϕ 2 1 + tan 2 ϕ 2 cos ~\phi=\dfrac{1-\tan^2\frac{\phi}2}{1+\tan^2 \frac{\phi}2} I 3 = 4 π 1 3 3 d ( tan x ) 3 tan 2 x + 1 \implies \mathfrak{I}_3=4\pi\int_{\frac{1}{\sqrt 3}}^{\sqrt 3}\dfrac{d(\tan x)}{3\tan^2 x+1} = 4 π 3 ( tan 1 3 x ) 1 3 3 =\dfrac{4\pi}{\sqrt 3}(\tan^{-1} \sqrt 3 x)|_{\frac{1}{\sqrt 3}}^{^{\sqrt 3}} = 4 π 3 tan 1 1 2 \color{#D61F06}{=\dfrac{4\pi}{\sqrt 3}\tan^{-1}\frac 12} 1 × 8 × 15 × 4 × 3 × 1 × 2 5 \large \color{#D61F06}{\therefore \sqrt{\dfrac{1\times 8\times 15\times 4\times 3\times 1\times 2}{5}}} = 24 \huge =\boxed{24} \Large * -An alternate approach here may be Using I . B . P I.B.P on I ( n ) = 0 1 ( sin x ) n d x \mathfrak{I}(n)=\int_0^1(\sin x)^n\, dx

Phew!! ;-)

great question!!!!!!

A Former Brilliant Member - 3 years, 7 months ago

Log in to reply

Thanks :-)

Rishabh Jain - 3 years, 7 months ago

I think you put two multiply symbols at the second last step

Joel Yip - 5 years, 3 months ago

Log in to reply

Edited! :-)

Rishabh Jain - 5 years, 3 months ago

Log in to reply

saw it and nice solution! +1!

Joel Yip - 5 years, 3 months ago

Log in to reply

@Joel Yip It took me a long time to write that whole thing but its good that you appreciated it... Thanks :-)

Rishabh Jain - 5 years, 3 months ago

Log in to reply

@Rishabh Jain My goodness.

Ashish Menon - 5 years ago

i did everything except the form of last integral , i was getting 4 π 3 ( arctan 3 π ) \frac { 4\pi }{ \sqrt { 3 } } (\arctan { 3 } -\pi )

A Former Brilliant Member - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...