Mysterious angles

Geometry Level 3

1 + sin x + cos 2 x sin 2 x + cos x = 3 \large \frac{1+\sin {x}+\cos {2x}}{\sin{2x}+\cos{x}}=\sqrt{3}

x = π X x=\frac \pi X is a solution to the equation above for some positive integer X X . What is X ? X?


Hint: See this note .


The answer is 30.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Noel Lo
Jul 26, 2017

1 + sin x + cos 2 x sin 2 x + cos x = 3 \frac{1+\sin{x}+\cos{2x}}{\sin{2x}+\cos{x}}=\sqrt{3}

1 + sin x + cos 2 x = 3 ( sin 2 x + cos x ) 1+\sin{x}+\cos{2x}=\sqrt{3}(\sin{2x}+\cos{x})

1 2 ( 1 + sin x + cos 2 x ) = 3 2 ( sin 2 x + cos x ) \frac{1}{2}(1+\sin{x}+\cos{2x})=\frac{\sqrt{3}}{2}(\sin{2x}+\cos{x})

1 2 + 1 2 sin x + 1 2 cos 2 x = 3 2 sin 2 x + 3 2 cos x \frac{1}{2}+\frac{1}{2}\sin{x}+\frac{1}{2}\cos{2x}=\frac{\sqrt{3}}{2}\sin{2x}+\frac{\sqrt{3}}{2}\cos{x}

1 2 + sin π 6 sin x + cos π 3 cos 2 x = sin π 3 sin 2 x + cos π 6 cos x \frac{1}{2}+\sin{\frac{\pi}{6}}\sin{x}+\cos{\frac{\pi}{3}}\cos{2x}=\sin{\frac{\pi}{3}}\sin{2x}+\cos{\frac{\pi}{6}}\cos{x}

1 2 + cos π 3 cos 2 x sin π 3 sin 2 x = cos π 6 cos x sin π 6 sin x \frac{1}{2}+\cos{\frac{\pi}{3}}\cos{2x}-\sin{\frac{\pi}{3}}\sin{2x}=\cos{\frac{\pi}{6}}\cos{x}-\sin{\frac{\pi}{6}}\sin{x}

1 2 + cos ( π 3 + 2 x ) = cos ( π 6 + x ) \frac{1}{2}+\cos{(\frac{\pi}{3}+2x)}=\cos{(\frac{\pi}{6}+x)}

1 2 + cos 2 ( π 6 + x ) = cos ( π 6 + x ) \frac{1}{2}+\cos{2(\frac{\pi}{6}+x)}=\cos{(\frac{\pi}{6}+x)}

Now we let θ = π 6 + x \theta=\frac{\pi}{6}+x . Note that we choose the special angles of π 3 \frac{\pi}{3} and π 6 \frac{\pi}{6} carefully so that we end up with this result:

1 2 + cos ( 2 θ ) = cos θ \frac{1}{2}+\cos{(2\theta)}=\cos{\theta}

It then remains to make use of the hint given in the question:

2 sin θ ( 1 2 + cos ( 2 θ ) ) = 2 sin θ cos θ 2\sin{\theta}(\frac{1}{2}+\cos{(2\theta)})=2\sin{\theta}\cos{\theta}

sin θ + 2 sin θ cos ( 2 θ ) = sin ( 2 θ ) \sin{\theta}+2\sin{\theta}\cos{(2\theta)}=\sin{(2\theta)}

sin ( 2 1 ) θ + 2 sin θ cos ( 2 θ ) = sin ( 2 θ ) \sin{(2-1)\theta}+2\sin{\theta}\cos{(2\theta)}=\sin{(2\theta)}

sin ( 2 θ ) cos θ sin θ cos ( 2 θ ) + 2 sin θ cos ( 2 θ ) = sin ( 2 θ ) \sin{(2\theta)}\cos{\theta}-\sin{\theta}\cos{(2\theta)}+2\sin{\theta}\cos{(2\theta)}=\sin{(2\theta)}

sin ( 2 θ ) cos θ + sin θ cos ( 2 θ ) = sin ( 2 θ ) \sin{(2\theta)}\cos{\theta}+\sin{\theta}\cos{(2\theta)}=\sin{(2\theta)}

sin ( 2 + 1 ) θ = sin ( 2 θ ) \sin{(2+1)\theta}=\sin{(2\theta)}

sin ( 3 θ ) = sin ( 2 θ ) \sin{(3\theta)}=\sin{(2\theta)}

sin ( 3 θ ) = sin ( π 2 θ ) \sin{(3\theta)}=\sin{(\pi-2\theta)}

3 θ = π 2 θ 3\theta=\pi-2\theta

( 3 + 2 ) θ = π (3+2)\theta=\pi

5 θ = π 5\theta=\pi

θ = π 5 \theta=\frac{\pi}{5}

Therefore,

π 6 + x = π 5 \frac{\pi}{6}+x=\frac{\pi}{5}

x = π 5 π 6 x=\frac{\pi}{5}-\frac{\pi}{6}

x = π 30 x=\frac{\pi}{30}

As required, X = 30 X=\boxed{30}

Elegant solution! Upvoted.

Rishik Jain - 3 years, 10 months ago

Log in to reply

Thanks for your encouragement!!! (+1)

Noel Lo - 3 years, 10 months ago

very nice. I seem to recall someone, perhaps @Mark Hennings , had an interesting solution to this as well. Mark, if so, would you mind reposting it?

Wesley Zumino - 3 years, 10 months ago

Log in to reply

My technique was to start with the equation 1 2 + cos ( 2 ( x + 1 6 π ) ) = cos ( x + 1 6 π ) \tfrac12 + \cos\big(2(x+\tfrac16\pi)\big) \; = \; \cos(x + \tfrac16\pi) and turn it into a quadratic equation for cos ( x + 1 6 π ) \cos(x + \tfrac16\pi) . This gives two possible values for cos ( x + 1 6 π ) \cos(x + \tfrac16\pi) , one of which is 1 4 ( 1 + 5 ) = cos 1 5 π \tfrac14(1 + \sqrt{5}) = \cos\tfrac15\pi .

Mark Hennings - 3 years, 10 months ago

Log in to reply

The quadratic equation approach is nice!

Calvin Lin Staff - 3 years, 10 months ago

Please be very careful with the equivalence of equations. sin A = sin B \sin A = \sin B does not imply that A = B A = B .

This is a very common mistake made when solving trigonometric equations. Can you determine the complete solution set to the problem?

Calvin Lin Staff - 3 years, 10 months ago

Your solution is incomplete. You have only demonstrated that pi/30 can be a solution of x. But in fact, there are infinitely many solutions of x. Only one of which is a unit fraction times pi.

Pi Han Goh - 3 years, 10 months ago

Log in to reply

@Pi Han Goh But for the purpose of this question, we just need to determine a solution so that X X is a positive integer

Noel Lo - 3 years, 10 months ago

Log in to reply

Yes, I know. But how do you know that 30 is the only positive integer solution?

Pi Han Goh - 3 years, 10 months ago

Log in to reply

@Pi Han Goh Ok, let's start with 1 2 + cos ( 2 ( x + 1 6 π ) ) = cos ( x + 1 6 π ) 2 cos 2 ( x + 1 6 π ) cos ( x + 1 6 π ) 1 2 = 0 [ 2 cos ( x + 1 6 π ) 1 2 ] 2 = 5 4 cos ( x + 1 6 π ) = 1 ± 5 4 = cos 1 5 π , cos 3 5 π \begin{aligned} \tfrac12 + \cos\big(2(x+\tfrac16\pi)\big) & = \; \cos(x + \tfrac16\pi) \\ 2\cos^2(x + \tfrac16\pi) - \cos(x + \tfrac16\pi) - \tfrac12 & = \; 0 \\ \big[2\cos(x + \tfrac16\pi) - \tfrac12\big]^2 & = \; \tfrac54 \\ \cos(x + \tfrac16\pi) & = \; \frac{1 \pm \sqrt{5}}{4} \; = \; \cos\tfrac15\pi\,,\,\cos\tfrac35\pi \end{aligned} The general solution of cos A = cos B \cos A = \cos B is A = 2 n π ± B A = 2n\pi \pm B for any integer n n . Thus x + 1 6 π = 2 n π ± 1 5 π , 2 n π ± 3 5 π x = 1 30 π + 2 n π , 11 30 + 2 n π , 13 30 π + 2 n π , 23 30 π + 2 n π \begin{aligned} x + \tfrac16\pi & = \; 2n\pi \pm \tfrac15\pi \,,\, 2n\pi \pm \tfrac35\pi \\ x & = \; \tfrac{1}{30}\pi + 2n\pi\,,\,-\tfrac{11}{30} + 2n\pi\,,\,\tfrac{13}{30}\pi + 2n\pi\,,\,-\tfrac{23}{30}\pi + 2n\pi \end{aligned} for any integer n n .

Mark Hennings - 3 years, 10 months ago

Noel, we also want to ensure that the answer is unique. As I mentioned, there are multiple values of (small) x x that would work. You are correct in the claim that there is only 1 unique value of X X that would work. However, that has not been proven (nor stated) in your solution.

Do you understand the gap that you're making? As I mentioned below, this is a very common mistake/misconception when solving trigonometric equations.

Calvin Lin Staff - 3 years, 10 months ago
Chew-Seong Cheong
Aug 12, 2017

1 + sin x + cos 2 x sin 2 x + cos x = 3 1 + sin x + cos 2 x = 3 sin 2 x + 3 cos x 1 + sin x 3 cos x = 3 sin 2 x cos 2 x 1 + 2 ( 1 2 sin x 3 2 cos x ) = 2 ( 3 2 sin 2 x 1 2 cos 2 x ) 1 2 cos ( x + π 6 ) = 2 cos ( 2 x + π 3 ) Let θ = x + π 6 1 2 cos θ = 2 cos 2 θ cos θ cos 2 θ = 1 2 \begin{aligned} \frac {1+\sin x + \cos 2x}{\sin 2x + \cos x} & = \sqrt 3 \\ 1+\sin x + \cos 2x & = \sqrt 3 \sin 2x + \sqrt 3 \cos x \\ 1 + \sin x - \sqrt 3 \cos x & = \sqrt 3 \sin 2x - \cos 2x \\ 1 + 2 \left(\frac 12 \sin x - \frac {\sqrt 3}2 \cos x \right) & = 2 \left(\frac {\sqrt 3}2 \sin 2x - \frac 12 \cos 2x \right) \\ 1 - 2 \cos \left(x + \frac \pi 6 \right) & = - 2 \cos \left(2x + \frac \pi 3 \right) & \small \color{#3D99F6} \text{Let }\theta = x + \frac \pi 6 \\ 1 - 2\cos \theta & = -2\cos 2\theta \\ \cos \theta - \cos 2 \theta & = \frac 12 \end{aligned}

Note that k = 0 n 1 cos ( 2 k + 1 2 n + 1 π ) = 1 2 \displaystyle \sum_{k=0}^{n-1} \cos \left( \frac {2k+1}{2n+1}\pi \right) = \frac 12 (see proof ). A particular case is 2 n + 1 = 5 2n+1=5 , then cos π 5 + cos 3 π 5 = 1 2 \cos \dfrac \pi 5 + \cos \dfrac {3\pi}5 = \dfrac 12 .

We note that θ = π 5 \theta = \dfrac \pi 5 is a solution, because then cos 2 θ = cos 2 π 5 = cos 3 π 5 \cos 2\theta = \cos \dfrac {2\pi} 5 = - \cos \dfrac {3\pi}5 . cos θ cos 2 θ = cos π 5 + cos 3 π 5 = 1 2 \implies \cos \theta - \cos 2\theta = \cos \dfrac \pi 5 + \cos \dfrac {3\pi}5 = \dfrac 12 . And from θ = x + π 6 = π 5 \theta = x + \dfrac \pi 6 = \dfrac \pi 5 , x = π 30 \implies x = \dfrac \pi{30} .

X = 30 \implies X = \boxed{30} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...