Nātīvitās Geoculus

Calculus Level 5

Inside the warm mansion, while delivering tons of presents to the children, Santa Claus became thirsty and hungry, so he took some break to help himself some delicious snack. After some minutes of searching, he found a very large caramel cookie in the shape of an ellipse whose semi-major and semi-minor are respectively 25 cm 25\text{ cm} and 24 cm 24\text{ cm} . He also found a series of bowls and a very large container of milk. Since Santa enjoys drinking and dipping, he poured a milk into a bowl in the form of a right-angle conical, circular frustum, satisfying the following conditions:

  • As shown above, when the cookie is dipped, its circumference is tangent to the inner surface, including two opposite ends of the circular bases.
  • The volume of the milk is the maximum.

If that volume is V π cm 3 V\pi\text{ cm}^3 , input V \lfloor V \rfloor as your answer.

Assumption: Neglect the thickness of the cookie.


The answer is 8064.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Dec 26, 2020

Extend the sides of the bowl to make a cone, and label the diagram as follows (where the cookie is D F DF ):

By alternate interior angles, α = B F G = F E G \alpha = \angle BFG = \angle FEG , and by corresponding angles, β = A F B = F I C \beta = \angle AFB = \angle FIC .

By properties of a conic section , the eccentricity is e = cos α cos β = 1 b 2 a 2 = 1 2 4 2 2 5 2 = 7 25 e = \frac{\cos \alpha}{\cos \beta} = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{24^2}{25^2}} = \frac{7}{25} . Therefore, cos α = 7 25 cos β \cos \alpha = \frac{7}{25}\cos \beta .

From B F D \triangle BFD , the height of the frustum is C G = 50 cos α = 14 cos β CG = 50 \cos \alpha = 14 \cos \beta .

From C D I \triangle CDI , one radius of the frustum is C D = I D sin β CD = ID \sin \beta and the height of the cone is C I = I D cos β CI = ID \cos \beta .

Since G B = C B C G = I D cos β 14 cos β GB = CB - CG = ID \cos \beta - 14 \cos \beta , from G H I \triangle GHI , the other radius of the frustum is G H = ( I D 14 ) cos β GH = (ID - 14) \cos \beta .

By the law of sines on F D I \triangle FDI , I D = 50 sin ( 180 α β ) sin 2 β = 25 sin α sin β + 25 cos α cos β ID = \frac{50 \sin(180 - \alpha - \beta)}{\sin 2\beta} = \frac{25\sin \alpha}{\sin \beta} + \frac{25\cos \alpha}{\cos \beta} . Substituting cos α cos β = 7 25 \frac{\cos \alpha}{\cos \beta} = \frac{7}{25} from above gives I D = 25 sin α sin β + 7 ID = \frac{25\sin \alpha}{\sin \beta} + 7 .

The volume of the frustum is V = 1 3 π C G ( C D 2 + G H 2 + C D G H ) V = \frac{1}{3}\cdot \pi \cdot CG (CD^2 + GH^2 + CD \cdot GH) . Substituting the above values and simplifying gives V f = 56 3 π ( 481 cos β 49 cos 3 β ) V_f = \frac{56}{3}\pi(481 \cos \beta - 49 \cos^3 \beta) .

Since the derivative of 481 cos β 49 cos 3 β 481 \cos \beta - 49 \cos^3 \beta with respect to cos β \cos \beta is 481 147 cos 2 β 481 - 147\cos^2 \beta , and 481 147 cos 2 β > 0 481 - 147\cos^2 \beta > 0 for all possible values of cos β \cos \beta , the volume increases as cos β \cos \beta increases, and the maximum volume is when cos β \cos \beta is a maximum at cos β = 1 \cos \beta = 1 . (In other words, when the frustum is a cylinder.)

The maximum volume is then V f = 56 3 π ( 481 1 49 1 3 ) = 8064 π V_f = \frac{56}{3}\pi(481 \cdot 1 - 49 \cdot 1^3) = 8064\pi , so V = 8064 \lfloor V \rfloor = \boxed{8064} .

Michael Huang
Dec 25, 2020

Let a a denote the semi-major and b b the semi-minor. Consider the isosceles trapezoid, the cross-section orthogonal to the circular bases r top r_{\text{top}} and r bottom r_{\text{bottom}} , and the angle α \alpha formed by the diagonal and one of the circular bases. Since b = r top r bottom b = \sqrt{r_{\text{top}}r_{\text{bottom}}} for the cross section to exist within the right-angle frustum (left that as the Sangaku exercise), condition r top r bottom r_{\text{top}} \leq r_{\text{bottom}} . Then, since the minor axis of the ellipse exists as the chord of the circular cross section of the radius 1 2 ( r top + r bottom ) \dfrac{1}{2}(r_{\text{top}} + r_{\text{bottom}}) , by the Pythagorean Theorem ,

s = ( 1 2 ( r bottom + r top ) ) 2 ( r top r bottom ) 2 = 1 4 ( r top ) 2 + 1 4 ( r bottom ) 2 1 2 r top r bottom \begin{aligned} s&= \sqrt{\left(\dfrac{1}{2}(r_{\text{bottom}} + r_{\text{top}})\right)^2 - \left(\sqrt{r_{\text{top}}r_{\text{bottom}}}\right)^2} \\ &= \sqrt{\dfrac{1}{4}(r_{\text{top}})^2 + \dfrac{1}{4}(r_{\text{bottom}})^2 - \dfrac{1}{2}r_{\text{top}}r_{\text{bottom}}} \end{aligned}

which shows that

Diameter of the bottom base = 2 r bottom = 2 a cos α + 2 1 4 ( r top ) 2 + 1 4 ( r bottom ) 2 1 2 r top r bottom Diameter of the top base = 2 r top = 2 a cos α 2 1 4 ( r top ) 2 + 1 4 ( r bottom ) 2 1 2 r top r bottom \begin{aligned} \text{Diameter of the bottom base} &= 2r_{\text{bottom}} &= 2a\cos\alpha + 2\sqrt{\dfrac{1}{4}(r_{\text{top}})^2 + \dfrac{1}{4}(r_{\text{bottom}})^2 - \dfrac{1}{2}r_{\text{top}}r_{\text{bottom}}}\\ \text{Diameter of the top base} &= 2r_{\text{top}} &= 2a\cos\alpha - 2\sqrt{\dfrac{1}{4}(r_{\text{top}})^2 + \dfrac{1}{4}(r_{\text{bottom}})^2 - \dfrac{1}{2}r_{\text{top}}r_{\text{bottom}}}\\ \end{aligned}

Using the following volume formula of a frustum,

Volume = 1 3 h ( A 1 + A 2 + A 1 A 2 ) \text{Volume} = \dfrac{1}{3}h \left(A_1 + A_2 + \sqrt{A_1A_2}\right)

where

  • h = 2 a sin α h = 2a\sin\alpha denotes the height of the trapezoid
  • A 1 = π ( r top ) 2 A_1 = \pi (r_{\text{top}})^2 denotes the area of the top circular base
  • A 2 = π ( r bottom ) 2 A_2 = \pi (r_{\text{bottom}})^2 denotes the area of the bottom circular base

using what we already know about the frustum and the given cross section, we obtain

Volume = 2 π 3 a sin α ( 3 a 2 cos 2 α + 1 4 ( r top ) 2 + 1 4 ( r bottom ) 2 1 2 r top r bottom ) = 2 π 3 a sin α ( 3 a 2 cos 2 α + b 4 4 ( r bottom ) 2 + 1 4 ( r bottom ) 2 b 2 2 ) = 2 π 3 a 2 ( r bottom b 4 4 ( r bottom ) 2 + 1 4 ( r bottom ) 2 b 2 2 ) 2 ( 3 ( r bottom b 4 4 ( r bottom ) 2 + 1 4 ( r bottom ) 2 b 2 2 ) 2 + b 4 4 ( r bottom ) 2 + 1 4 ( r bottom ) 2 b 2 2 ) \begin{aligned} \text{Volume} &= \dfrac{2\pi}{3}a\sin\alpha \left(3a^2\cos^2\alpha + \dfrac{1}{4}(r_{\text{top}})^2 + \dfrac{1}{4}(r_{\text{bottom}})^2 - \dfrac{1}{2}r_{\text{top}}r_{\text{bottom}}\right)\\ &= \dfrac{2\pi}{3}a\sin\alpha \left(3a^2\cos^2\alpha + \dfrac{b^4}{4(r_{\text{bottom}})^2} + \dfrac{1}{4}(r_{\text{bottom}})^2 - \dfrac{b^2}{2}\right)\\ &= \dfrac{2\pi}{3}\sqrt{a^2 - \left(r_{\text{bottom}} - \sqrt{\dfrac{b^4}{4(r_{\text{bottom}})^2} + \dfrac{1}{4}(r_{\text{bottom}})^2 - \dfrac{b^2}{2}}\right)^2}\left( 3\left(r_{\text{bottom}} - \sqrt{\dfrac{b^4}{4(r_{\text{bottom}})^2} + \dfrac{1}{4}(r_{\text{bottom}})^2 - \dfrac{b^2}{2}}\right)^2 + \dfrac{b^4}{4(r_{\text{bottom}})^2} + \dfrac{1}{4}(r_{\text{bottom}})^2 - \dfrac{b^2}{2}\right) \end{aligned}

where a 2 ( b 4 4 ( r bottom ) 2 + 1 4 ( r bottom ) 2 b 2 2 ) 2 a^2 \geq \left(\dfrac{b^4}{4(r_{\text{bottom}})^2} + \dfrac{1}{4}(r_{\text{bottom}})^2 - \dfrac{b^2}{2}\right)^2 . But that suggests the frustum "vanishes" at the positive upper bound r bottom = a + a 2 b 2 r_{\text{bottom}} = a + \sqrt{a^2 - b^2} , following b = r bottom ( 2 a r bottom ) b = \sqrt{r_{\text{bottom}}(2a - r_{\text{bottom}})} (illustrating the ellipse of the fixed axes overlaps both circular bases).

As a 2 ( r bottom b 4 4 ( r bottom ) 2 + 1 4 ( r bottom ) 2 b 2 2 ) 2 = 0 a^2 - \left(r_{\text{bottom}} - \sqrt{\dfrac{b^4}{4(r_{\text{bottom}})^2} + \dfrac{1}{4}(r_{\text{bottom}})^2 - \dfrac{b^2}{2}}\right)^2 = 0

for r bottom = a + a 2 b 2 r_{\text{bottom}} = a + \sqrt{a^2 - b^2} , the height is decreasing and continuous at b r bottom a + a 2 b 2 b \leq r_{\text{bottom}} \leq a + \sqrt{a^2 - b^2} , involving AM-GM Inequality . With some algebraic and calculus calculation (as the derivative of V V is nonpositive at that interval), it achieves its maximum at r bottom = b r_{\text{bottom}} = b , yielding a cylinder of the volume V max = 2 π b 2 a 2 b 2 V_{\text{max}} = 2\pi b^2 \sqrt{a^2 - b^2} for a = 25 a = 25 and b = 24 b = 24 .

In this case, V max = 8064 π V_{\text{max}} = 8064\pi , where V = 8064 \lfloor V \rfloor = 8064 .


The graph above illustrates the idea of the volume equation in the Cartesian plane. While it has maxima at r bottom < b r_{\text{bottom}} < b , they do not satisfy the condition b = r top r bottom b = \sqrt{r_{\text{top}}r_{\text{bottom}}} needed to solve the problem.

Last, but not least, Merry Christmas! \color{#D61F06}\text{Merry Christmas!}

Hi

Due to brilliant's awesome support for direct messaging I'm here.

I'm no longer active on brilliant and feel kinda sad at the loss of the community it was before.

Do you have other social media that you are comfy with sharing?

Julian Poon - 4 months, 2 weeks ago

Log in to reply

Hello, Julian! Long time no see! It has been a long while since I was out from Brilliant! I have some social media, including Discord. Let me know which one you are using.

Michael Huang - 4 months, 2 weeks ago

Log in to reply

Hello! I open brilliant only when Miss Chrome™ reminds me of it's existence., hence replying so late. My discord is Free food#9020

Julian Poon - 4 months, 2 weeks ago

Log in to reply

@Julian Poon Done. I have sent the friend invitation message to you. Please check when you can.

Michael Huang - 4 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...